制备型加压液相色谱,按照色谱柱和样品量的大小,分为:(1)低压液相色谱;(2)中压液相色谱;反相色谱(RPC)是指利用非极性的反相介质为固定相,极性有机溶1剂的水溶液为流动相,根据溶质极性(疏水性)的差别进行溶质分离与纯化的洗脱色谱法。(3)高压液相色谱;(4)色谱。低压、中压与高压液相色谱的压力范围之间会存在一定交叠,没有统一、明确的标准。 色谱柱压通常为2bar(或30psi)左右,对
液相分离
制备型加压液相色谱,按照色谱柱和样品量的大小,分为:(1)低压液相色谱;(2)中压液相色谱;反相色谱(RPC)是指利用非极性的反相介质为固定相,极性有机溶1剂的水溶液为流动相,根据溶质极性(疏水性)的差别进行溶质分离与纯化的洗脱色谱法。(3)高压液相色谱;(4)色谱。低压、中压与高压液相色谱的压力范围之间会存在一定交叠,没有统一、明确的标准。 色谱柱压通常为2bar(或30psi)左右,对于那些容易分离的简单混合物,由于色谱具有操作简便、经济等优点,常常是实验室的佳选。但色谱不同于一般的层析分离,这种分离没有压力,而分离通常使用瓶装氮气加压,使流动相具有一定的流速,从而缩短了分离时间。 色谱使用的柱子一般是玻璃柱,柱直径为3~10cm.长度为7~15cm。色谱中使用广泛的固定相为硅胶。采用的粒径通常为:25~40μm,40~63μm或63~200μm的球形固定相。其它如键合相、氧化铝、聚酰胺吸附剂也常用作色谱的固定相使用。
液相色谱仪的原理: 分配系数与组分、流动相和固定相的热力学性质有关,也与温度、压力有关。在不同的色谱分离机制中,K有不同的概念:吸附色谱法为吸附系数,离子交换色谱法为选择性系数(或称交换系数),凝胶色谱法为渗透参数。但一般情况可用分配系数来表示。 在条件(流动相、固定相、温度和压力等)一定,样品浓度很低时(Cs、Cm很小)时,K只取决于组分的性质,而与浓度无关。这只是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰;在许多情况下,随着浓度的增大,K减小,这时色谱峰为拖尾峰;气泡进入阀中会紧贴在阀体的一侧,使球难以返回到阀座,引起倒流,使压力和流速变化范围大,有时甚至为零。而有时随着溶质浓度增大,K也增大,这时色谱峰为前延峰。因此,只有尽可能减少进样量,使组分在柱内浓度降低,K恒定时,才能获得正常峰。
制备液相色谱仪可以满足常规实验室纯化制备,并可根据使用需要,搭配紫外检测器组成等度系统,高压二元梯度系统,实现实验室制备提取。广泛用于制药、化工、食品、生化,环保等领域。
制备液相色谱仪原理:制备液相色谱是指采用液相色谱技术制备纯物质,即分离、收集一种或多种色谱纯物质。制备液相色谱中的“制备”这一概念指获得足够量的单一化合物,以满足研究和其它用途。制备液相色谱的出现,使液相色谱技术与经济利益建立了联系。制备量大小和成本高低是制备液相色谱的两个重要指标。塞杆现象:液相色谱仪无流动相流出,压力波动,更换新的垫圈后仍渗漏。

制备液相色谱仪特点:按照操作的样品量分为三种:半制备(≤100mg)、制备(0.1-100g)、大规模制备(≥100g)。色谱柱直径一般大于2厘米,主要用于工业化大生产。
制备液相色谱仪应用领域:科研、工业化大生产,尤其是化学、化工、制药行业的工业前处理步骤,应用十分普遍。
制备液相色谱仪主要优点:
1.开机进行自检。
2.单一波长标准灵敏度、高灵敏度吸收谱。
3.五波长、时间编程标准灵敏度、高灵敏度吸收谱。

(作者: 来源:)