丰田2005年申请专利,设计思路与萨博SVC发动机类似,汽缸体与曲轴箱之间通过两条偏向凸轮轴连接,当需要改变压缩比时,电机控制偏心轮转动,使汽缸体与曲轴箱产生出轴向的移动,从而改变压缩比。但内燃机的爆发力会极大影响偏心凸轮轴的控制,机构复杂,所以只停留在研究阶段。PC6D102缸盖配送服务热线。
现代(Hyundai)就是是在汽缸盖上增加一个
PC6D102缸盖配送
丰田2005年申请专利,设计思路与萨博SVC发动机类似,汽缸体与曲轴箱之间通过两条偏向凸轮轴连接,当需要改变压缩比时,电机控制偏心轮转动,使汽缸体与曲轴箱产生出轴向的移动,从而改变压缩比。但内燃机的爆发力会极大影响偏心凸轮轴的控制,机构复杂,所以只停留在研究阶段。PC6D102缸盖配送服务热线。
现代(Hyundai)就是是在汽缸盖上增加一个带可移动副活塞的可变腔,里面有活塞,活塞能够在腔内移动。当需要改变压缩比时,电机控制蜗杆带动偏心凸轮,凸轮转动改变副活塞位置,使汽缸容积发生改变,从而改变压缩比。德国FEV的2级可变压缩比方案是在活塞销外加一个偏心环,其通过两个小型液压油缸控制。当需要改变压缩比时,活塞推动偏心环转动,使连杆长度变化,从而改变压缩比(从10:1到13:1)。由于油缸由连杆大头供油控制,所以连杆更粗一点。这类方案对于整机的修改相对较少,所有系统都集成在连杆上,因此成本不会太高,预计增加在120-170美元,但目前还处在研究阶段,根据FEV测算,采用此套方案,大概可以实现6%的节油效果。PC6D102缸盖配送服务热线。
采用合成铸铁工艺,消除了生铁中粗大石墨的遗传性,石墨大小为4~5级,石墨形态得到改善,使石墨分布更均匀,同时降低了铸件的缩松倾向,改善了铸件的加工性能。在一定范围内提高铁液的过热温度,延长高温静置时间,能使石墨细化,基体组织细密,抗拉强度提高;若进一步提高过热温度,铁液的形核能力下降,石墨形态变差,甚至出现自由渗碳体,使得强度性能范围下降,因此存在一个“临界温度”。PC6D102缸盖配送服务热线。
一般认为,普通灰铸铁的临界温度1 500~1 550 ℃左右[1]。笔者公司采用过热温度1 510~1 530 ℃生产发动机缸体缸盖,高温静置5~10 min,石墨形态得到改善,本体强度及稳定性得到提高。由于高温静置和长时间铁液保温会造成碳的损失及形核核心的减少,在铁液出炉时加入0.03%~0.06%增碳剂(粒度0.3~0.8 mm)进行预处理,增加铁液的形核核心,并起到一定的孕育作用。对于灰铸铁,孕育的实质是借助孕育剂去影响铁液的共晶反应,良好的孕育处理是灰铸铁获得细小均匀的A型石墨、消除碳化物及过冷组织,减少断面敏感性及硬度散差,改善铸件力学性能及加工性能的基本保障。PC6D102缸盖配送服务热线。
锰是阻碍石墨化、促进碳化物形成的元素,在铸铁生产中Mn和S同时存在,Mn、S对灰铸铁组织和性能的影响取决于是否发生化学反应生成MnS,MnS在铁液中是形成石墨的核心,间接起到促进石墨化的作用,因此锰对石墨化的影响是不强烈的。PC6D102缸盖配送服务热线。
锰与硫化合所起的作用是以“锰硫比”来决定的,Mn=1.7S+0.3或者Mn=3.3S,灰铸铁铁液中w(S)的适宜范围是0.08%~0.12%,硫含量为0.02%与硫含量为0.1%的石墨形态相比,随着硫含量增加,石墨长度变短,端部钝化、形态弯曲[10]。笔者公司现在S的比例是0.1%~0.12%,由公式可得出,Mn的比例范围应该保持在0.47%~0.504%;另外由Mn-S溶度积曲线[11]看出,碳当量为4.0%,S为0.1%~0.12%时,Mn为0.45%~0.5%。PC6D102缸盖配送服务热线。

一般的w(Sn)加入量在0.02%~0.04%,过高,有可能会使材料变脆[10]。笔者公司以锡在0.03%~0.05%进行试验验证,试验效果见表5。康明斯缸体缸盖铸件要求本体强度≥207 MPa,锡含量为0.03%~0.05%,铸件力学性能完全满足技术要求。通过试验统计,当锡含量≥0.05%时,其对力学性能的改善效果不明显。PC6D102缸盖配送服务热线。
两种以上合金元素的配合使用,用一种合金元素和另一种合金元素配合,防止另一种合金元素易产生白口倾向及生成碳化物的可能[15]。笔者公司生产缸体缸盖加入的合金元素锰、铬是正偏析元素,偏离石墨偏析于晶界,硅、铜、锡是反偏析元素,吸附于石墨,为了克服元素偏析的不利影响,熔炼时同时添加正、反偏析元素,利用其综合性能,得到希望的珠光体组织和力学性能。PC6D102缸盖配送服务热线。

(作者: 来源:)