通过采用SEM, XRD、电位一时间曲线、膜重变化等方法详细研究了促进剂、氟化物、Mn2+,Ni2+,Zn2+,PO4;和Fe2+等对铝材磷化过程的影响。研究表明:具有水溶性好,用量低,成膜的特点,是铝材磷化的有效促进剂、氟化物可促进成膜,增加膜重,细化晶粒;Mn2+,Ni2+能明显细化晶粒,使磷化膜均匀、致密并可以改善磷化膜外观;Zn2+浓度较低时,不能成膜或成膜差,随着
铝压铸件加工厂家
通过采用SEM, XRD、电位一时间曲线、膜重变化等方法详细研究了促进剂、氟化物、Mn2+,Ni2+,Zn2+,PO4;和Fe2+等对铝材磷化过程的影响。研究表明:具有水溶性好,用量低,成膜的特点,是铝材磷化的有效促进剂、氟化物可促进成膜,增加膜重,细化晶粒;Mn2+,Ni2+能明显细化晶粒,使磷化膜均匀、致密并可以改善磷化膜外观;Zn2+浓度较低时,不能成膜或成膜差,随着Zn2+浓度增加,膜重增加O4含量对磷化膜重影响较大,提高PO4。含量使磷化膜重增加。
压力铸造由于其发展的迅速己成为铸造行业,蓬勃兴起的产业部门和重要市场,对压铸件的不断增长需求,促使压铸行业在设备、的工艺方法、压铸合金性能提高、模具制造技术的进步等领域都有了显著的改观,但与国外压铸技术比较,总体差距仍不小,为此技术已成为压铸行业发展的动力。
提高压铸件质量,适应国内外市场的需求,不断探讨压铸技术发展滞后于生产发展的因素己成为当前压铸行业普遍关心的问题,本文就压铸工艺中压铸模温度控制对压铸件质量的影响问题进行初步探讨。
1 模具温度控制对压铸件质量的影响
1.1 模温控制的作用
1)模温控制对合金液流的温度、流动性、填充时间、填充流态以及合金液的冷却速度、结晶状态和顺序、收缩应力等具有重要影响。
2)模温过高,压铸件易收缩形成凹陷或表面产生气泡;模温过低,铸件表层冷凝后,又被高速液流冲破形成铸件表面缺陷,还会造成铸件收缩应力增大而产生裂纹。
3)模温控制对延长模具寿命,提高生产效率作用显著。模具温度梯度变化过大,形成的应力状态与频繁的应力交变,将导致模具过早开裂与变形。
4)模温控制对压铸件出模及尺寸精度有影响。模温控制在一定范围内,铸件的收缩率相对稳定,铸件可获得良好的尺寸精度、表面质量和力学性能。
对每一次的压铸循环来说,模具从合金液中吸收输入热量,经过热传导向外界散热输出热量,一般情况下辐射与自然对流仅散失了总输入热量的5%,其余95%完全由模具的热传导输出。当单位时间内模具吸热与散热相等时,才能达到平衡状态,即模具达到热平衡必须使输入给模具的热量与经过自然散失和人工冷却输出的热量之和相等,做到在每一压铸循环中模具输入和输出的热量一致。
在实际生产中,影响模具热平衡的因素很多,包括浇注温度、模具预热温度、合金液的容量、模具体积、浇注排溢系统的位置及数量、模具冷却状况以及操作循环时间等等,因此要做到良好的模具热平衡,必须通过压铸工艺参数的调整,包括压射比压、冲头速度、留模与出模时间及喷涂等互相影响和制约的因素才能实现。
(作者: 来源:)