究竟什么是低温压力容器无损检测设备
我们大多数人可能听过射线探伤,但是究竟射线探伤是什么,它是怎么形成的,它应用在哪个领域,我们是不熟悉的,下面小编呢,就给大家简单的做个介绍,希望能帮助到大家。射线探伤是利用某种射线来检查焊缝内部缺陷的一种方法,常用的射线有X射线和γ射线两种。低温压力容器无损检测设备设备在出现故障时我们需要做些什么近些年来,科技带动经济的不断发展,各行各业的发展都
低温压力容器无损检测设备
究竟什么是低温压力容器无损检测设备
我们大多数人可能听过射线探伤,但是究竟射线探伤是什么,它是怎么形成的,它应用在哪个领域,我们是不熟悉的,下面小编呢,就给大家简单的做个介绍,希望能帮助到大家。射线探伤是利用某种射线来检查焊缝内部缺陷的一种方法,常用的射线有X射线和γ射线两种。低温压力容器无损检测设备设备在出现故障时我们需要做些什么近些年来,科技带动经济的不断发展,各行各业的发展都处于高速发展,近几年,大家都看到了各个行业的巨大潜力,随着越来越多的生产厂家的加入,为各个行业注入了新鲜活力,一切看上去,都在往好的方向去发展,去进行。X射线和γ射线还是有所不同的,我给大家简单的来区分一下。
其中,γ射线能透照300mm厚的钢板,透照时不需要电源,方便野外工作,环缝时可一次曝光,但透照时间长,不宜用于小于50mm构件的透照。X射线透照时间短、速度快,检查厚度小于30mm时,显示缺陷的灵敏度高,但设备复杂、费用大,穿透能力比γ射线小。渗透检测(penetranttesting,缩写符号为PT),又称渗透探伤,是一种以毛细作用原理为基础的检查表面开口缺陷的无损检测方法。
X射线和γ射线能不同程度地透过金属材料,对照相胶片产生感光作用。利用这种性能,当射线通过被检查的焊缝时,因焊缝缺陷对射线的吸收能力不同,使射线落在胶片上的强度不一样,胶片感光程度也不一样,这样就能准确、可靠、非破坏性地显示缺陷的形状、位置和大小。有些仪器分析仍不可避免地需要通过一定的化学预处理和必要的化学反应来完成。
不知道大家通过我的简单介绍,对射线探伤有没有进一步的了解,还有任何问题可以随时和我们交流。
低温压力容器无损检测设备有哪些部分
在之前的介绍中,小编着重的对按焊接检测数量进行焊接检测的情况进行了详细介绍,下面小编会给大家来介绍焊接检测中的的第二种方式,那就是按焊接检验方法来进行检测。
按焊接检验方法分两个部分
1.破坏性检测
(1)主要适用于力学性能实验,其中还包括拉伸试验、硬度试验、弯曲试验、疲劳试验、冲击试验等情况。
(2)还有就是化学分析试验,包括化学成分分析、腐蚀试验等。
(3)另外金相检验也会应用到,包括宏观检验,微观检验等。
2.非破坏性检测
(1)主要应用于外观检验,包括尺寸检验、几何形状检测、外表伤痕检测等。
(2)耐压试验也会涉及,包括水压试验和气压试验等。
(3)密封性试验,包括气密试验、载水试验、氨气试验、沉水试验、煤油渗漏试验、氨检漏试验等。
磁粉检验、着色检验、超声波探伤、射线探伤这些地方也会用到焊接检测。
金属材料的化学分析
金属化学成分分析(ehemiealeomitionanalysisofmetal)查明金属材料化学成分的试验方法。
鉴定金属由哪些元素所组成的试验方法称定性分析。测定各组分间量的关系(通常以百分比表示)的试验方法称定量分析。若基本上采用化学方法达到分析目的,称为化学分析。若主要采用化学和物理方法(特别是后的测定阶段常应用物理方法),一般采用仪器来获得分析结果,称为仪器分析。化学分析根据各种元素及其化合物的化学性质,利用化学反应,对金属材料进行定性或定量分析。定量化学分析按后的测定方法可分为重量分析法、滴定分析法和气体容积法等三种。超声波探伤对缺陷的显示不直观,探伤技术难度大,容易受到主客观因素影响,以及探伤结果不便于保存,超声波检测对工作表面要求平滑,要求富有经验的检验人员才能辨别缺陷种类、适合于厚度较大的零件检验,使超声波探伤也具有其局限性。重量分析法是使被测元素转化为一定的化合物或单质与试样中的其他组分分离,后用天平称重方法测定该元素的含量。滴定分析法是将已知准确浓度的标准溶液与被测元素进行完全化学反应,根据所耗用标准溶液的体积(用滴定管测量)和浓度计算被测元素的含量。气体容积法是用量气管测量待测气体(或将待测元素转化成气体形式)被吸收(或发生)的容积,来计算待测元素的含量
由于化学分析具有适用范围广和易于推广的特点,所以至今仍为很多标准分析方法所采用。仪器分析根据被测金属成分中的元素或其化合物的某些物理性质或物理与化学性质之间的相互关系,应用仪器对金属材料进行定性或定量分析。有些仪器分析仍不可避免地需要通过一定的化学预处理和必要的化学反应来完成。金属化学分析常用的仪器分析法有光学分析法和电化学分析法两种。可利用物质在不同光谱分析法的特征光谱对其进行定性分析,根据光谱强度进行定量分析。光学分析法是根据物质与电磁波(包括从γ射线至无线电波的整个波谱范围)的相互关系,或者利用物质的光学性质来进行分析的方法。
TOFD技术采用的基本物理原理。
TOFD技术采用的基本物理原理。
衍射现象的解释:波遇到障碍物或小孔后通过散射继续传播的现象,根据惠更斯原理,媒质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的包迹,就是该时刻新的波阵面。
TOFD技术采用一发一收两个宽带窄脉冲探头进行检测,探头相对于焊缝中心线对称布置。发射探头产生非聚焦纵波波束以一定角度入射到被检工件中,其中部分波束沿近表面传播被接收探头接收,部分波束经底面反射后被探头接收。01)×10^-9米γ射线波长10^-10~10^-14米3、频率不同γ射线的频率比射线大,γ射线频率高于1。接收探头通过接收缺陷的衍射信号及其时差来确定缺陷的位置和自身高度。
(作者: 来源:)