电源滤波器的典型结构介绍电源滤波器的典型结构如下图所示,这是一种无源网络结构,对交流和直流电源都适用,具有双向抑制性能。这些器件会将输入浪涌电流钳位在一个电平上,该电平使电源元件能够不受到影响并正常工作。将它插入在交流电网中与电源之间,相当于这二者的EMI噪声之间加上一个阻断屏障,这样一个简单的无源滤波器起到了双向抑制噪声的作用,从而在各种电子设备中获得广泛的应用。图中Cx是差
交流组合电源批发商
电源滤波器的典型结构介绍
电源滤波器的典型结构如下图所示,这是一种无源网络结构,对交流和直流电源都适用,具有双向抑制性能。这些器件会将输入浪涌电流钳位在一个电平上,该电平使电源元件能够不受到影响并正常工作。将它插入在交流电网中与电源之间,相当于这二者的EMI噪声之间加上一个阻断屏障,这样一个简单的无源滤波器起到了双向抑制噪声的作用,从而在各种电子设备中获得广泛的应用。
图中Cx是差模电容器,一般称为X电容,电容量宜选为0.01-2.22μF,CY1和CY2是共模电容器,一般称为Y电容,电容量约为几纳法(nF)到几十纳法。C3和C4的电容量不宜选得过大,否则容易引起滤波器甚至机壳漏电的危险。变频器:变频器的设计专门针对电动机变频启动,启动时电压、频率同步上升,用其改装的电源,可能会对用电设备造成影响,尤其是变频器、可控整流、通信设备等。L为共模扼流圈,它为同向绕在同一个铁氧体环上的一对线圈,电感量约为几毫亨(mH)。对于共模干扰电流,两个线圈产生的磁场是同方向的,共模扼流圈表现出较大的阻抗,从而起到衰减干扰信号的作用;而对于差模信号(在这里是低频电源电流),两个线圈产生的磁场抵消,所以不影响电路的电源传输功能。

三角形连接将三相电源的三个线圈
三角形连接
将三相电源的三个线圈,以一个线圈的末端和相邻一相线圈的始端按顺序连接起来,形成一个三角形回路,再从三个连接点引出三根导线与负载相连,如下图所示。
从图中可以得知,电源连接成三角形时线电压与相电压的关系为:线电压UL等于相电压UΦ,即UL=UΦ。而星形连接中的线电压是相电压的1.73倍。
当前能源短缺 的忧虑再度升高的背景下,节约能源是我们未来面临的重要的问题,在照明领域,led发光 产品的应用正吸引着世人的目光,LED 作为一种新型的绿色光源产品,必然是未来发展的趋势,二十一世纪将进入以LED为代表的新型照明光源时代。

交流信号频率的调节是通过改变点与点之间输出时间间隔Δt来实现,信号频率与Δt的关系如下:
式中,f为输出信号频率,N为每周波拟合点数(本系统设计N为1 440)。至于直流电,大概除了那句广告中会念叨的“直流变频空调”和常用的电池,想不到其他的了吧。若输出信号f=50 Hz,则Δt为1/72 000 s,由于STM32F103ZET6工作频率在72 MHz,所以只需将触发DAC输出的定时器自动重装载寄存器周期的值设置为999即可。
定时时间值计算公式为:
输出两路交流信号之间相位差的调节则根据波形拟合点数据数组,选择不同的起始位置触发来实现。设两路输出分别为A和B,存放波形拟合点的数组为DATA[2N],N为每周波拟合点数,本系统为1440。在电源电路的初级端电路上,解决瞬时浪涌电流的典型方法是金属氧化物可变电阻(MOV)。若A、B两路触发起始位置分别为DATA[n1]、DATA[n2],当n1=n2时,A路与B路的相位差为0°;当n1=0,n2=360时相位关系为A路超前B路90°。相位分辨率为360/1440=0.25°, A与B的相位差关系为:
式(5)中,若n1>n2,则A路超前B路Ph度;若n1=n2,则同相位;若n1
幅值的调节由式(1)可知,可通过改变输入DAC寄存器DAC_DHRx中DOR的值实现,即对波形拟合点数组中的数据乘以一个系数α,为V=α×DATA[2N],其中V为输出信号的幅值。
(作者: 来源:)