正则比例实模态叶片阻尼识别方法借助具有黏性阻尼的n自由度系统振动微分方程,推导了正则比例实模态叶片阻尼识别方法,并分析了该方法的识别误差。随后,借助西门子LMS Test.Lab测试软件,通过建模、通道设置、锤击示波、锤击设置、测试、数据验证及模态识别等步骤,获得了某静止叶片的阶模态振型。并借助高斯拟合得到了测试叶片的频率-阻尼比特性曲线,且具有较好的拟合效果。,分析了入口
叶片碰磨监测
正则比例实模态叶片阻尼识别方法
借助具有黏性阻尼的n自由度系统振动微分方程,推导了正则比例实模态叶片阻尼识别方法,并分析了该方法的识别误差。随后,借助西门子LMS Test.Lab测试软件,通过建模、通道设置、锤击示波、锤击设置、测试、数据验证及模态识别等步骤,获得了某静止叶片的阶模态振型。并借助高斯拟合得到了测试叶片的频率-阻尼比特性曲线,且具有较好的拟合效果。,分析了入口气体扰流激振法、压电陶瓷激励法、电磁激励法及声波激励法等几种旋转叶片激振方案的优劣,并基于真实机组叶尖间隙测量与主动控制实验台制定了相应的叶片阻尼识别实验方案。4、通过分析传感器的一组、两组、三组接收光纤的信号特征,采用三组光纤束的光强比值信号对传感器精度进行了比对,并结合实验数据对传感器性能进行了分析,在传感器的线性测量范围内,测量精度达到25um。
数控机床反向间隙数值较小,对加工精度影响不大则不需要采取任何措施
在数控机床的进给传动链中,联轴器、滚珠丝杆、螺母副、轴承等均存在反间间隙。机床进给轴在换向运动的时候,在一定的角度内,尽管丝杆转动,但是丝杆螺母副还要等间隙消除以后才能带动工作台运动,这个间隙就是反向间隙。
对于采用半闭环控制的数控机床,反向间隙会影响到定位精度和重复定位精度。反向间隙数值较小,对加工精度影响不大则不需要采取任何措施; 若数值过大,则系统的稳定性明显下降,加工精度明显降低,尤其是曲线加工,会影响到尺寸公差和曲线的一致性,此时必须进行反向间隙的测定和补偿。如在G01切削运动时,反向间隙会影响插补运动的精度,若偏差过大就会造成“圆不够圆,方不够方”的情形;射流吹风比越大,气动效率越高、泄漏流量越低,但吹风比增大时总压损失系数也会增加,叶尖气膜冷效随着吹风比增加而增大。 而在G00定位运动中,反向偏差影响机床的定位精度,使得钻孔、镗孔等孔加工时各孔间的位置精度降低。这就需要数控系统提供反向间隙补偿功能,以便在加工过程中自动补偿一些有规律的误差,提高加工零件的精度。

数控机床各进给轴的反向间隙进行测量和补偿
机床在出厂前已仔细的测量了进给系统中的间隙值,并进行了补偿。随着数控机床使用时间的增长,反向间隙还会因为运动副的磨损而逐渐增加,所以需要定期对数控机床各进给轴的反向间隙进行测量和补偿。
当在数控系统中进行反向间隙补偿后,数控系统在控制进给轴反向运动时,自动先让该进给轴反向运动,然后再按编程指令进行运动。即数控系统会控制伺服电机多走一段距离,这段距离等于反向补偿值,从而补偿反向间隙。
在不同的速度下测得的反向间隙是不同的,一般低速时的反向间隙值比高速时的反向间隙值在,尤其是在进给轴负荷较大,运动阻力较大时。所以有的数控系统就提供了低速G01和高速G00两种补偿值。

(作者: 来源:)