叶片静频及应力分布测量
对转子叶片行了振动试验,分别测定了叶片阶模态的频率及振型,结果发现,当激起同样的叶尖振幅时,有几种振型所需的激振力小,对这些振型重点测量。其原理如下:首先,对加速度进行积分处理,获得速度信号v,从而掌握风机叶片振动频率。 由于受到引电器通道数的限制,需要尽量减少实测时叶片上的应变片数目,因此,在振动台上进行的应力分布试验确定台架实测时应变片
叶片振动测量系统
叶片静频及应力分布测量
对转子叶片行了振动试验,分别测定了叶片阶模态的频率及振型,结果发现,当激起同样的叶尖振幅时,有几种振型所需的激振力小,对这些振型重点测量。其原理如下:首先,对加速度进行积分处理,获得速度信号v,从而掌握风机叶片振动频率。 由于受到引电器通道数的限制,需要尽量减少实测时叶片上的应变片数目,因此,在振动台上进行的应力分布试验确定台架实测时应变片的具体粘贴位置及方向,只在大主应力点上粘贴应变片。
什么是风力发电
把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。但Δt太大,会在原始数据中引起低频和高频分量的混淆,不能真实反映原信号x(t)的全部情况,影响分析的精度。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。 风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。
风轮
风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。本文对叶片固有特性和振动响应分析方法研究实现了叶片振动解析法和考虑S1、S2气动加载、集中载荷加载振动响应的计算,对叶片的初期设计有重要的意义。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)
由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。由于风电机组叶片受到阵风推力产生的轴向方向上的载荷巨大,风速的微小变化就会引起轴向力较大的变化,引起叶片在轴向方向上振动,所以设计合理的控制系统对叶片进行降载减振将降低叶片,轮毂以及其他相关部件载荷,对风电机组的运行寿命起着至关重要的作用。为保持风轮始终对准风向以获得大的功率,还需在风轮的后面装一个类似风向标的尾舵。
高速旋转叶片振动实时监测技术是电力工业、能源工业、航空、航运业亟待解决的难题,传统的接触式测量方法很难做到同时监测同级所有叶片的振动情况,因此人们一直在研究非接触式旋转叶片振动的测量新技术—叶端定时测量技术。此外,由于航空发动机的整机振动激振源复杂,再加上噪声,因此对其振动信号的分析处理需要采用多种方法进行反复研究比较,方可获得比较理想的测试结果。它是一种利用旋转着的叶片在有振动与无振动时到达叶端传感器的时刻所存在的偏差来计算叶片振动振幅和频率的测量技术。随着激光技术和电子技术的发展,叶端定时测量技术在硬件技术上已完全成熟。但是在数据处理方法上还不够完善。成为阻碍叶端定时技术发展的重大障碍。
(作者: 来源:)