基于知识的表征方法主要是根据人脸器1官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特征,这些特征被称为几何特征。为什么这个假设默认成立,设想一下,一个棕色头发的人,在不同光照,遮挡,角度条件下,发色
人脸识别厂家
基于知识的表征方法主要是根据人脸器1官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特征,这些特征被称为几何特征。为什么这个假设默认成立,设想一下,一个棕色头发的人,在不同光照,遮挡,角度条件下,发色看起来虽然有轻微的区别,但依然与真实颜色非常接近,反应在发色的特征值上,可能是0到0。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。

人脸图像匹配与识别
人脸图像匹配与识别:提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份1信息进行判断。不被察觉的特点对于一种识别方法也很重要,这会使该识别方法不令人反感,并且因为不容易引起人的注意而不容易被欺骗。这一过程又分为两类:一类是确认,是一对一进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。
随着大数据、共享时代的来临,数据安全问题也越发被重视起来,以人脸识别为代表的新一代技术革命已经展开。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。这些对技术的要求越来越高,既要求数据的准确性,又要保证数据的安全性,人脸识别在这方面大有可为,作为行业的主力军,企业的技术实力与能力决定着整个产业的走向,任何一点点技术的都可能带来行业的变革。
未来人脸识别的主要研究方向将围绕目前面临的一些问题,如人脸面部结构的相似性、人脸的姿态、年龄变化、复杂环境的光照变化、人脸的饰物遮挡等。

(作者: 来源:)