针对条件一,本发明先将轻质陶粒进行蒸压加热处理,由于所选原料为湖泊底泥和湿基污泥,在高温高压下坯体内部的某些有机物质会发生复杂的物理化学反应生成一定量的气体,且原料内部加入了一定量的碳酸氢钠,在50℃以上开始逐渐分解生成碳酸钠、二氧化碳和水。由于试样处于高温高压状态下,在内部高温生成气体与外界高压环境共同作用下,使得坯体内部孔壁密实度更高。以轻质陶粒代替砾石制成的超轻陶粒混凝土
回填轻质陶粒厂商
针对条件一,本发明先将轻质陶粒进行蒸压加热处理,由于所选原料为湖泊底泥和湿基污泥,在高温高压下坯体内部的某些有机物质会发生复杂的物理化学反应生成一定量的气体,且原料内部加入了一定量的碳酸氢钠,在50℃以上开始逐渐分解生成碳酸钠、二氧化碳和水。由于试样处于高温高压状态下,在内部高温生成气体与外界高压环境共同作用下,使得坯体内部孔壁密实度更高。以轻质陶粒代替砾石制成的超轻陶粒混凝土小型空心砌块和隔墙板是性能优良的新型墙体材料,在建筑行业中有广泛的应用。

其次由于微波烧结过程中材料坯体内外可以实现均匀加热,从而消除了常温烧结时试样内部所存在的温度梯度,也就消除了试样由于温度梯度的存在产生开裂或在内部形成热应力,实现了内部固体颗粒的均匀性和致密性。针对条件二,由于本次发明中所采用的原材料为湖泊底泥和湿基污泥,这俩种材料中含有较多的有机类杂质,能够在一定温度下高温燃烧分解产生气体,且本次发明中还引入了碳酸氢钠,一方面碳酸氢钠在高温情况下会熔融分解产生水蒸气和CO2气体,另一方面是作为助熔剂加入。再次,由于采用的是微波烧结方式,因而烧结效率更高,物料内部各种物质反应更加完全,生成的有害气体更少,从而带来的环保经济效益更好。除此之外,坯体内部气体来源还有较少自由水和结合水的蒸发以及原料中某些盐类的分解,因而在孔壁结构足够密实的情况下,原料体系能够为坯体内部提供足够的微孔结构生成条件。

国外研究现状 近期,国外已有不少关于将污泥制成轻质建筑材料的报道。在日本,以燃烧过的污泥粉为主要原料,与污泥干粉或者粉煤等可燃性粉末,按需要的发热量调配成混合料,加水造粒,在链式烧结机上烧成轻骨料。轻骨料的烧结温度为1000~1100℃,烧结时间为25~30min。轻骨料的筒压强度为3~4Mpa,吸水率为16%~18%。且污泥中还含有较多的有机物,其易形成粘稠的高分子化合物并以丝絮的形式缠绕包裹在固体颗粒的表面,从而增强原料体系的塑性。福航公司李联盟介绍,在美国,NakouziS等人通过研究[3],发现回收或再利用染料污泥,将其转变成制轻质陶粒的制陶成分,代替了原有的土地填埋的处理方法,取得了一定经济效益,并同时解决了污泥处置问题。

经过上百件样的试烧,不添加助胀剂的原料化学成分多在以下范围(%):SiO2:48~68、Al2O3:12~18、Fe2O3:5~10、K2O+Na2O:2.5~7.0。原料的化学成分如能控制在上述 范围内,多数料球都能烧胀。在日本,以燃烧过的污泥粉为主要原料,与污泥干粉或者粉煤等可燃性粉末,按需要的发热量调配成混合料,加水造粒,在链式烧结机上烧成轻骨料。土轻质陶粒烧胀性时[8],发现在某温度范围内,当所用轻质陶粒原料的化学成分处于某一范围时,所得陶粒均具有良好的烧胀性。据此,他提出了用三元法表示原料化学成分的Riley三角形

(作者: 来源:)