依据van Deemeter 方程,随着颗粒度的不断降低,涡流扩散减小,分子传质阻力减小,相应的理论塔板高度( HETP) 也下降,得到的柱效也更高,由于压力与填料粒径平方成反比,因此随着粒径减小压力会急剧增加。从液相色谱出现至今,硅胶粒径从100 μm左右降低到3-10 μm,再减小到亚2μm,其柱效由每米数十塔板数提高到3.2x105塔板数每米。液相色谱也从工业用常压制备色
有机杂化硅胶
依据van Deemeter 方程,随着颗粒度的不断降低,涡流扩散减小,分子传质阻力减小,相应的理论塔板高度( HETP) 也下降,得到的柱效也更高,由于压力与填料粒径平方成反比,因此随着粒径减小压力会急剧增加。从液相色谱出现至今,硅胶粒径从100 μm左右降低到3-10 μm,再减小到亚2μm,其柱效由每米数十塔板数提高到3.2x105塔板数每米。液相色谱也从工业用常压制备色谱发展到分析检测用高压HPLC再到目前超高压UPLC。工业分离纯化的粒径在10微米以上,而常规HPLC填料粒径在3-5微米,UPLC填料颗粒小于2μm。因此伴随着越来越精细的硅胶色谱填料的使用,HPLC分离分析性能也越来越好。亚2μm的硅胶填料的使用使得HPLC的分辨率,检测速度及柱效达到前
l所未有的水平,同时也引起了色谱分析仪器的变革。
另外粒径大小一致,可以保持分子在填料微球的扩散迁移路径基本保持一致,相应的保留时间也一致,减少分子扩散系数,从而获得更高的柱效。因此高度粒径均一的单分散色谱填料既可以降低涡流扩散系数又可以减少分子扩散系数,从而提高柱效。另外粒径越精
l确、分布越窄、其柱床越稳定、反压越低、批与批的重复性越好,越能满足高
l性能色谱分析检测的需求。第二代多孔球型色谱填料一般是由溶胶一凝胶法 (Sol-Gel) 或是喷雾干燥法制备。这两种方法制备的球形硅胶粒径分布都较宽不能直接用作色谱填料,而需要经过复杂筛分分级处理去除过大或过小的硅胶微球以满足色谱填料的需求,因此生产周期长、产率低、批与批的重复性差,且会产生大量的不合格的产品。而且填料的颗粒越细筛分工艺越困难、筛分设备也越贵。其实,即使经过筛分,其填料粒径分布也较宽。因此如何直接制备精
l确的粒径大小和高度的粒径均一性单分散多孔硅胶一直是该领域的技术难题和发展方向。
HILIC 色谱填料自1990年Alpert提出亲水作用色谱的概念以来,其应用逐渐增多。HILIC是基于极性化合物在色谱固定相表面水层和流动相之间进行的亲水分配作用达到保留的一种分离模式。在HILIC分离中,流动相中水的比例越小,则洗脱能力越弱; 反之,洗脱能力越强。化合物的极性越小,则保留越弱; 反之,则保留越强。HILIC尤其适合强极性化合物分离和分析。各种商品化亲水作用色谱材料的种类日益丰富,涵盖了氨基、二醇基、咪唑基、三氮唑基、酰胺型、糖型和两
l性离子型键合相,为亲水作用色谱的发展和应用奠定了良好的基础。HILIC 可以作为正相色谱的替代和反相色谱的有效补充。
从第三代单分散硅胶色谱填料的精准制造技术的突破及产业化,到胰岛素精纯的反相硅胶色谱填料的成功产业化,再到手性色谱填料,再到体积排阻的填料产业化成功,这些看似不可能的奇迹被纳微科技一个接一个地创造,导致国外色谱公司及很多人都很好奇纳微科技是如何做到的。其实纳微并没有什么神奇力量,有的只是比别人多一些耐心,多一些坚持。每一项重大技术的突破都是纳微长期坚持的结果,很多技术都需要花上十多年的研发才获得成功。可预期,随着单分散色谱填料精准制备技术的进一步完善、品种增多,并在单分散硅胶基质上实现各种功能化,就象球形硅胶替代无定型硅胶成为现代HPLC主流色谱填料不可避免一样;单分散色谱填料替代多分散色谱填料成为未来色谱填料的主流也是必然的发展趋势。这一次色谱新材料的变革和新材料产业化技术突破公司不再缺位,而且是在引
l领。
(作者: 来源:)