图像处理与分析——机器视觉的核心
用于机器视觉的图像处理与分析方法的核心是,解决目标的检测识别问题。当所需要识别的目标比较复杂时,就需要通过几个环节,从不同的侧面综合来实现。
对目标进行识别提取的时候,首先是要考虑如何自动地将目标物从背景中分离出来。目标物提取的复杂性一般就在于目标物与非目标物的特征差异不是很大,在确定了目标提取方案后,就需要对目标特征进行增强。
全自动视觉检测机
图像处理与分析——机器视觉的核心
用于机器视觉的图像处理与分析方法的核心是,解决目标的检测识别问题。当所需要识别的目标比较复杂时,就需要通过几个环节,从不同的侧面综合来实现。
对目标进行识别提取的时候,首先是要考虑如何自动地将目标物从背景中分离出来。目标物提取的复杂性一般就在于目标物与非目标物的特征差异不是很大,在确定了目标提取方案后,就需要对目标特征进行增强。
随着计算机技术、微电子技术以及大规模集成电路的发展,图像信息处理工作越来越多地借助硬件完成,如 DSP 芯片、的图像信号处理卡等。软件部分主要用来完成算法中并不成熟又较复杂或需不断完善改进的部分。这一方面提高了系统的实时性,同时又降低了系统的复杂度。
机器视觉技术的优势
针对量大面广的混凝土梁体
环境:机器视觉是通过即图像摄取装置将目标转换成图像信号,传送给的图像处理系统,在测量工件过程中,无需与工件进行接触,因此能够适应恶劣危险生产环境,同时也不会对工件造成接触性损伤;而人工则需要与工件进行接触性检测,因为无法应对恶劣环境,且在检查过程中不可避免的会对工件造成接触性损伤;
长期来看,机器视觉成本会更低;
信息集成:机器视觉可以通过多工位检测方法,一次性完成待检产品的轮廓、尺寸、外观缺陷、产品高度等多技术参数的测量;而人工检测在面对不同的检测内容时,只能通过多工位合作协调完成,而不同员工检测标准不一,极容易出现误检的情况;
数字化:机器视觉在工作过程中产生的说要测量数据,均可独立拷贝或以网络连接方式拷出,便于生产过程统计和分析。同时还可在检测后导出数据并生产报表,无需人工一一添加,这无疑大大优于人工检测的数据统计;
总体来说,机器视觉对比人工检测具有自动化、客观、非接触和等特点。特别是在工业生产领域,机器视觉强调生产的精度和速度,以及工业现场环境下的可靠性,在重复和机械性的工作中具有较大的应用价值,对企业来说是实现自动化生产重要的一步。
机器视觉智能检测系统
应用表面缺陷检测系统,提高了检测的准确度和效率。那么,在进行产品表面检测之前,有几个步骤需要注意。首先,要利用图像采集系统对图像表面的纹理图像进行采集分析;第二,对采集过来的图像进行一步步分割处理,使得产品表面缺陷能像能够按照其特有的区域特征进行分类;第三,在以上分类区域中进一步分析划痕的目标区域,使得范围更加的准确和。通过以上的三步处理之后,产品表面缺陷区域和特征能够进一步确认,这样表面缺陷检测的基本步骤就完成了。
(作者: 来源:)