六氟化硫气体的熄弧性能也是非常好的,这有以下几个方面的原因:
六氟化硫气体在电弧的作用下会发生分解和游离,有多原子结构分子分解为单原子或带电粒子的气体,在2000℃左右开始分解为低氟化物,4000℃左右开始游离,6000℃左右时游离的迅速,当温度高于10000℃时,六氟化硫气体就全部游离了;这种内部的变化将影响气体的导热、导电性能,使它的导热、导电性能大大增强。
六氟化硫密度
六氟化硫气体的熄弧性能也是非常好的,这有以下几个方面的原因:
六氟化硫气体在电弧的作用下会发生分解和游离,有多原子结构分子分解为单原子或带电粒子的气体,在2000℃左右开始分解为低氟化物,4000℃左右开始游离,6000℃左右时游离的迅速,当温度高于10000℃时,六氟化硫气体就全部游离了;这种内部的变化将影响气体的导热、导电性能,使它的导热、导电性能大大增强。
气体导热性能增强,电弧的散热就加快了,这样就有利于电弧熄灭后间隙中的绝缘介质迅速降温,有利于低氟化物复合成六氟化硫,同时有利于恢复绝缘,大大降低了电弧的复燃,有利于熄弧。

对于气体导电性能增强有利于熄弧的原因,可能有点不太好理解,导电性能增强了只会有利于燃弧,怎么会有利于熄弧呢原因是这样的:导电性能增强了确实有利于燃弧,通过几种气体电弧的伏安特性曲线可以发现,六氟化硫气体的伏安特性曲线i低,也就是说,在电流相同的情况下,六氟化硫气体的电弧电压i低,而电弧能量就是Uh*I,也i低,电弧在电流很小的情况下也能维持,不会发生断裂,这样就不会发生截流现象,这也是六氟化硫气体比较优越的地方;我们知道现在的六氟化硫断路器都是在电弧电流过零时熄灭的,电弧在燃弧时电弧能量小,电弧的温度和分解的气体就相对也较少,这对于电流过零后间隙的绝缘强度的恢复非常有利,使得熄弧后很难发生重燃或复燃,所以六氟化硫气体既有利于燃弧,又有利于熄弧。
此外,六氟化硫气体的负电性(吸附自由电子的特性)和二次复合特性(在电弧中分解的低价氟化物在熄弧后迅速还原成六氟化硫分子),这些特性也使得六氟化硫气体无论是在起始介质强度、介质恢复速度还是终的介质强度都是比较高的。

将硫、、一氯化硫、或等加入到无水中,以镍为阳极进行电解即可制得六氟化硫。或氟和硫直接反应制备六氟化硫。还可以金属氧化物为催化剂于300℃下用空气氧化,或者在500~2000℃使氟化硫热解。2、以长约300mm直径25mm的镍管为反应器,将盛有硫粉的镍舟置于其中,反应管与一石英阱连接,石英阱以液态氧冷却。装置的末端与一装有新脱水的KF的铁制干燥管相连,以隔离空气中的湿气。
硫在氟气流中燃烧,生成的产物凝聚在冷阱中。随后进行纯化,使产物气化并通过10%的KOH热溶液(不用NaOH)洗涤除去其中的杂质(HF,SF2,SF4,SOF2,S2F10)。然后用P4O10干燥产物气体,并在室温下通过活性炭除去S2F10。3、使SO2在过量的F2中燃烧可生成SF6。反应温度约650℃,产物在冷阱中凝聚,其中除SF6外主要杂质是SO2F2。纯化时将其通过装有水和热的10%KOH溶液的洗涤瓶,后用P4O10干燥。


(作者: 来源:)