菊花的开花期一般在30天左右,11月上旬集中开放。这不仅不利于企业产品的市场推广和宣传,而且会导致对铭牌的误读,导致参数错误,甚至发生生产事故。我们使用批量收获。收获时间是开脏的三分之二。当所有的花开放时,它们不仅加工后容易分散,而且香味和颜色也很差。收获时,我们从正确的地方切花,然后铺在竹板上进行遮荫干燥,或直接切花头进行加工。菊花干燥15天,失水率82%。当电能果蔬烘干机干
电能果蔬烘干机
菊花的开花期一般在30天左右,11月上旬集中开放。这不仅不利于企业产品的市场推广和宣传,而且会导致对铭牌的误读,导致参数错误,甚至发生生产事故。我们使用批量收获。收获时间是开脏的三分之二。当所有的花开放时,它们不仅加工后容易分散,而且香味和颜色也很差。收获时,我们从正确的地方切花,然后铺在竹板上进行遮荫干燥,或直接切花头进行加工。菊花干燥15天,失水率82%。当电能果蔬烘干机干燥室内空气流速为0.8m/s时,空气温度分别为50℃、60℃、70℃和80℃。干燥时间分别为13小时、9小时、7小时和5.5小时。风量需要在2200m3/h和5200m3/h之间,这样可以大大缩短干燥时间。我们把新鲜的菊花放在电能果蔬烘干机的多孔板上。一般来说,电能果蔬烘干机一层或两层菊花放在木板上。烘焙温度设定在60℃。当菊花完全干燥或90%干燥时,取出成品进行干燥。
上述处理方法质量好,。此外,干燥室出口处的平行蒸发器也可用于吸收干燥室内的潜热和感热空气。通常我们需要5公斤的花来购买1公斤的干货,而每亩菊花的干货是100-150公斤。电能果蔬烘干机的原理和方案要求尽可能多的阳光,因此采用了集热温室式干燥装置。顶部透明的温室是干燥室。电能果蔬烘干机干燥过程主要由集热器对空气介质进行加热,而集热器和地面是30度。电能果蔬烘干机采用V型双风道集热器。干燥室直接连接。热泵设备安装在干燥室后侧的底部,并增加回风管等设备。干燥室内的通风口由阀门控制,可分别进行太阳能独立干燥、电能果蔬烘干机和太阳能热泵联合干燥。太阳能是一种天然热源。它是环境友好和廉价的干燥食品。其缺点是夜间和雨天不能干燥,干燥食品的容量相对较小。由于热泵供暖受环境条件的限制,将热泵和太阳能结合起来供暖,可以实现不间断供暖。它完全解决了太阳能在夜间和雨天不发热的问题,从而提高了干燥物料的质量和数量,缩短了干燥周期,保证了食品安全和卫生。
电能果蔬烘干机与通风温室底部及集热器出口之间的连接采用多根管道连接,在自然循环条件下风能均匀地送入温室。此外,还应提高烘干机的质量和使用寿命,延长菊花烘干机的使用寿命。实验表明,这种自然循环条件下的空气量并不适合菊花干燥的要求。经过多次试验,发现集热器的两端均设有出风口,与干燥室底部连接有软管,并用风扇强制循环,使装置的通风能满足菊花干燥的基本要求。该方法简便易行,易于制造。该方法还具有两个缺点:一是供气时管道内的热损失,当电能果蔬烘干机集热器到达干燥室时,集热器中的空气温度显著下降;二是风扇不能充分地排出集热器和集热器板中的热量。因此,我们改进了干燥室实验装置的连接方式。
我们直接将收集器与电能果蔬烘干机连接起来。水在两侧的扩散速度不仅加强了水的蒸发,而且由于菊花的进一步加热,加快了干燥速度。每个集热器有两个出口和一个入口,两个风扇,并安装了强制送风的风扇。这避免了由于管道的连接而引起的热损失,并改善了进入干燥室的通道。风温。因此,不仅可以充分地除去集热器和集热板的热量,而且在干燥室中获得均匀的热空气。电能果蔬烘干机智能温度控制器采用温度控制器驱动的直流风机通风方式。具有以下优点:,可自动调节风量,使装置的通风量与干燥室温度一致,风扇转速高,风量大,干燥效果好,如果风速较慢,则风温不会降低。非常高。低、低风量和高温,因此也能满足干燥要求。第二,整个装置的循环功率是通过电能的智能控制实现的。
温度对菊花干燥时间和含水量的影响如图4-5所示。但是也会有过量的加热,甚至局部温度超过100摄氏度,导致营养风味的损失和干燥产品的质量。电能果蔬烘干机内空气温度的变化对菊花的干燥时间和含水量有显著的影响。当温室气温为40℃时,干燥11小时后湿基含水率为31%;当温室气温为50℃时,干燥11小时后湿基含水率为22%;当温室气温为60℃时,湿基含水率为14%。干燥9小时后。干燥室内空气介质温度较低时,菊花的表面温度也较低。此时,电能果蔬烘干机内向菊花的传热较弱,因此传热的驱动力也较弱,必须延长干燥时间。
电能果蔬烘干机对菊花干燥时间越短,含水率下降越快,干燥介质温度越高,传质驱动力越大,材料界面温度越高,从界面逸出的水蒸气越快,菊花的干燥时间越短,但透射电镜观察的结果表明温度不能超过80℃,否则会破坏菊花的。根据以上计算,热泵系统的实际压缩功率约为700W,在试验设备配置时,电能果蔬烘干机选用了功率为800W的三菱KB134VPD。在干燥过程中,通过电能果蔬烘干机电能表的前后读数差来测量干燥装置的能耗。例如,当电度表开始读取E0并结束读取Ei时,用于在0-1周期中干燥的能量消耗是Wi=E0-Ei。从能量计的实验数据可以看出,当干燥厚度和质量相同,湿基含水量达到20%时,太阳能系统单独干燥的能耗约为3°C,热泵系统单独干燥的能耗约为10°C,而太阳能系统单独干燥的能耗约为10°C。h表明单独使用太阳能干燥可以降低运行成本。
太阳能是一种可再生能源,也是现阶段廉价、清洁的能源。在该装置中,采用活塞式压缩机将氟里昂和热力膨胀阀压缩至节流阀。用之不竭。它的缺点受到昼夜、天气和气候等因素的影响。通过太阳能单独干燥菊花试验,可知太阳能在十月份晴天可用于菊花干燥,但在雨天干燥效果较差。电能果蔬烘干机不仅可以实现物料的独立干燥,而且可以作为太阳能联合干燥设备的辅助干燥设备。
根据当地气候条件,综合分析了太阳能单独干燥菊花、热泵单独干燥菊花和太阳能热泵联合干燥菊花的特点、可行性和发展趋势。由于电能果蔬烘干机主体封闭、体积大,仅由下方的金属托架支撑,因此不仅要求所选金属材料的承载能力高,而且要求严格的焊接工艺,容易造成制造缺陷,影响美观,甚至造成严重事故。比较三种干燥方法对相同干燥原料的干燥曲线,可以看出在相同的干燥时间和其他干燥条件下,太阳能干燥的终含水量高于热泵干燥和太阳能热泵干燥。通过实验可以看出,热泵独立干燥菊花的速率高于太阳能独立干燥菊花。其中,电能果蔬烘干机速率醉大,三种干燥速率在菊花干燥前期的差异大于后期的差异。电能果蔬烘干机湿度低,水蒸气与菊花表面的压差大,水分传递速度快,干燥速率较大。在菊花干燥初期,干燥室湿度对干燥速率也有很大影响。干燥一段时间后,菊花表面层被干燥,大部分自由水被去除,蒸发被转移到内部。因此,水分向空气的传递阻力大大增加,空气湿度对干燥速率的影响也减小,因此可以看到太阳能。干菊花与热泵干燥菊花和太阳能热