5-51风机产生的原因是此次打表所用的磁性表座固定百分表的方式刚性和可靠性欠佳,当联轴器转到下方时,由于磁性表座、连接杆、紧固件和百分表的自重,造成百分表下坠,探头脱离测点,结果就是产生上文所述的异常读数。当检修人员按作者建议制作的表架后,在检修过程中,不再出现异常读数,检修任务按时圆满完成。5-51风机转子不平衡和检查处理措施造成风机转子不平衡的原因主要有:
5-51风机
5-51风机产生的原因是此次打表所用的磁性表座固定百分表的方式刚性和可靠性欠佳,当联轴器转到下方时,由于磁性表座、连接杆、紧固件和百分表的自重,造成百分表下坠,探头脱离测点,结果就是产生上文所述的异常读数。当检修人员按作者建议制作的表架后,在检修过程中,不再出现异常读数,检修任务按时圆满完成。5-51风机转子不平衡和检查处理措施造成风机转子不平衡的原因主要有:叶轮出现不均匀的磨损或腐蚀;叶轮表面存在不均匀的积灰或附着物;叶片连接处存在裂纹或叶轮与轮毂、轮毂与轴颈的连接配合松动等。工业生产中的5-51风机特别是离心式风机应用很广泛,在一些生产装置中甚至属关键设备。用测振仪测得数据,如果显示振动值径向较大而轴向较小或者振动值随转速上升而增大,都是转子不平衡引起振动的特征。
预防处理措施主要有:
一是,根据5-51风机的运行工况,在进风机前工序上采取除尘措施,控制减少进入风机的粉尘等含量;
二是,定期清理风机叶轮,顺便仔细检查叶轮是否存在裂缝以及叶轮与主轴的配合情况。一般来说,转子不平衡引起的振动都是叶轮表面存在不均匀的积灰或附着物产生的。金属叶轮是离心风机的重要组成部分,在一定程度上决定着离心风机的性能。对于难于清洗的5-51风机叶轮转子可采用化学法清洗,如硫酸生产中二硫化硫主风机叶轮,可采用氢氧化钙稀水,再用高压喷射机喷射清洗叶轮,速度快效果佳。
蜗壳优化对5-51风机金属叶轮稳定运行的影响
蜗壳是离心风机金属叶轮的重要组成部分。它可以通过导流与扩大压力来提高离心风机的效率。蜗壳入口气流由于受到蜗壳流动不对称的影响,导致分布不均的现象发生。可以看出,原始风机叶轮流道内靠近出口处形成涡旋,主要原因是叶片出口附近存在较为严重的边界层分离现象。这种分布不均匀的现象会直接堵塞叶轮出口,从而使叶轮发生周期性的加速或减速,进而降低离心风机的工作效率,缩小了5-51风机工作的范围,影响了金属叶轮的平稳运行。因此在蜗壳的优化设计过程中必须将蜗壳宽度对流场的影响考虑在内,合理设计外壳的宽度,降低对流场的影响。从而保证金属叶轮的平稳运行。
电机优化对5-51风机金属叶轮稳定运行的影响吸油烟机、空调系统等设备空间较小,为了节省空间,一般会使用内藏电动机设备。内藏电动机的长度、头部倾角等在一定程度上影响着风机性能和噪音。对内藏电动机的形状设计不当会增加金属叶轮内部的流动损失,从而导致噪声增大,离心风机性能降低。消声蜗壳对5-51风机气动性能的影响原风机与不同消声组合试验所得的气动性能对比如图3所示。电动机的轴向长度和气流的排挤率呈正相关的关系。叶轮进口处的流道变窄会使前盘处脱流区域变大,从而导致金属叶轮内部损失增加。因此,在设计电机形状时,应充分考虑电机形状对叶轮内部流动的影响,从而提高金属叶轮的稳定性,确保离心风机的性能。
针对5-51风机有无进气箱两种结构形式,建立了两种计算模型,利用CFX 软件对两种模型进行数值模拟,研究其内部三维流场特性,基于数值模拟结果分析了进气箱对离心风机的性能影响。数值模拟结果表明:加进气箱后,离心风机的全开流量与压力有所降低,缩短了有效工作区域;在5-51风机内部叶轮进口处产生涡旋现象,堵塞了叶轮流道,使风机的效率和压力降低。数值模拟结果与实验测试值对比是比较吻合。进气箱是离心风机重要的组成部分,主要应用于大型离心风机与双吸离心风机。进气箱在其出口处气体发生近90°转弯,内部流场十分复杂,并造成很大的流动损失。风机结构复杂且叶片外形不规则,因此生成结构化网格比较困难,相反非结构化网格适应能力强,在处理复杂结构时有利于网格的自适应。其出口速度的不均匀性对5-51风机性能影响明显,有必要对其特性进行研究。A.G.Sheard通过研究加进气箱的通风机,在5-51风机叶轮进口加导流板控制叶轮进口的非均匀气流,结果表明在叶轮进口加导流板能够提高风机的全压,并得出了叶片根部断裂的原因。使用三维粒子动态分析仪(3D-PDA)对大型风机进气箱内部三维气体流场进行测量,揭示了其内部流动的基本特征,为了解进气箱流场结构和流动机理提供了依据。
为改善5-51风机受气体粘性影响导致流动分离加剧的现象,在传统蜗壳型线设计理论的基础上,研究气体粘性力矩对蜗壳壁线分布的影响,并采用动量矩修正方法对其进行改型设计。另外,为真实反映风机内流场分布情况,在标准k-ε 计算模型的扩散项中加入粘性应力作用,使其高计算误差降低至3%。主要原因是大流量工况下,蜗壳内部气流速度较高,气流与穿孔板之间的摩擦损失增加。对比分析改型前后风机数值模拟计算和试验测量结果可知,采用修改的k-ε 模型进行计算发现改型后风机内旋涡强度减小,蜗壳出口靠近蜗舌处流动分离得到改善。试验结果表明:改型5-51风机出口静压提升约25Pa,较大全压效率较原型机提升约10%。
同时,由于蜗壳张开度扩大能够抑制流动分离,使蜗舌附近区域的旋涡强度及其影响区域减小,从而有效地降低了多翼离心风机噪声2.5dB。多翼离心风机广泛应用于国民经济的各个领域,是工业生产中主要耗能设备之一,蜗壳作为离心风机中不可或缺的基本元件,其结构的不对称性及内部流动的复杂性会对叶轮出口气流角造成较大影响,使其沿圆周方向呈现出明显的不对称性。而在风机实际运行