生物质颗粒做锅炉燃料是发展的必然趋势
生物质颗粒燃料做锅炉燃料是发展的必然趋势,生物质燃料多为稻壳、花生壳、玉米芯、油茶壳、棉籽壳及“三剩物”经过加工产生的块状环保新能源。基本特性:根据瑞典及欧盟的生物质颗粒分类标准,若以其中间的分类值为例,则可将生物质颗粒大致上描述为以下特性:生物质颗粒直径一般为6~8毫米,长度为其直径4~5倍,破碎率小于1.5%
生物颗粒炉公司
生物质颗粒做锅炉燃料是发展的必然趋势
生物质颗粒燃料做锅炉燃料是发展的必然趋势,生物质燃料多为稻壳、花生壳、玉米芯、油茶壳、棉籽壳及“三剩物”经过加工产生的块状环保新能源。基本特性:根据瑞典及欧盟的生物质颗粒分类标准,若以其中间的分类值为例,则可将生物质颗粒大致上描述为以下特性:生物质颗粒直径一般为6~8毫米,长度为其直径4~5倍,破碎率小于1.5%~2.0%,干基含水量是小于10%~15%,灰分含量小于1.5%,硫含量和氯含量均是小于0.07%,氮含量小于0.5%。若使用添加剂,则应为农林产物,并且应标明使用种类和数量。欧盟标准对于生物质颗粒的热值没有提出具体的数值,但要求销售商应予以标注。此种锅炉使用固化或气化的生物质燃料,提供热水形式的热能,它的优点是体积小,结构简单,价格低。瑞典标准要求生物质颗粒的热值一般应在16.9 兆焦上。生物能源技术的研究与开发已成为世界重大热门课题之一,受到与科学家的关注。
生物质燃料热水锅炉节能原理
由有关燃烧理论可知,保持燃料充分燃烧的必要条件为保持足够的炉膛温度,合适的空气量及与燃料良好的混合、足够的燃烧时间和空间。因此,本文将依据生物质燃料本身的特性,结合燃烧理论,针对锅炉结构进行节能分析。
炉排及炉膛
生物质燃料热水锅炉采用双层炉排结构,即在手烧炉排一定高度另加一道水冷却的钢管式炉排,其成弯管直接插入上方锅筒中,这种设计一方面增大了水冷炉排吸热面积,另一方面加快了炉排与锅筒内回水的热传递。
燃料燃烧采用下吸式燃烧方式。成型燃料由上炉门加在上炉排上进行预热、燃烧,由于风机的引导,新燃料不会直接遇到高温过热烟气,延缓了挥发分的集中析出,从而避免了炉膛温度的波动,使燃烧趋于稳定;同时,挥发分必须通过高温氧化层,与空气充分混合,在焦炭颗粒间隙中进行着火燃烧;在完成一段燃烧过程后,上炉排形成的燃料屑和灰渣漏至下炉膛并继续燃烧,直到燃烬。目前山东希尔生物质能源公司的“螺旋风翅燃烧器技术”很好的解决了中型生物质锅炉的燃烧不充分、结焦等现象。
采用双层炉排,实现了秸秆成型燃料的分步燃烧,缓解秸秆燃烧速度,达到燃烧需氧与供氧的匹配,使秸秆成型燃料稳定持续完全燃烧,在提高燃料利用率的同时起到了消烟除尘作用。
对流受热面
生物质燃料热水锅炉的对流受热面分为两个部分:降尘对流受热面和降温受热面。对流受热面极易发生以下现象:高温烟气与锅筒中的水换热不均,从而引起热水部分出现沸腾,增加锅炉运行的不稳定因素;受整体外形约束,烟道长度设计偏短,导致烟气与锅筒里的水换热不够充分,使得排烟温度过高,增加了锅炉的排烟热损失。生物质燃料的挥发分均在60%~70%,因此在设计燃烧设备时应重点考虑挥发分的问题。为避免上述问题出现,降温对流受热面与降尘对流受热面常常采取分开布置;降温换热面置于上锅筒内,采用烟管并联设计,增加烟气与锅筒中水的热交换,降低排烟温度,提高燃烧效率;降尘则利用锅炉后部的下锅筒及管路引起的烟气通道面积的变化达到效果。
炉门设计
目前应用较多的炉门设计为双炉门。上炉门常开,作为投燃料与供应空气之用;下炉门用于清除灰渣及供给少量空气,正常运行时微开,在清渣时打开;一方面保证了燃烧所需条件,另一方面减少了由于炉门多而造成的散热损失。
(作者: 来源:)