钛酸酯偶联剂的亲有机部分通常为长链烃基(C12 ~18 ) ,它与聚合物链通过分子间的范德华力结合在一起。这种偶联作用对于聚烯烃之类的热塑性塑料特别适用。长链的缠绕可转移应力应变,提高冲击强度、伸长率和剪切强度,同时可在保持拉伸强度的情况下,增加填充量。偶联剂大致可分为系、钛酸酯系、铝酸酯系、锆酸酯系、铬络合物系及其他脂肪酸、醇、酯等几类,但应用广泛的主要是前两种。171
171偶联剂供应商
钛酸酯偶联剂的亲有机部分通常为长链烃基(C12 ~18 ) ,它与聚合物链通过分子间的范德华力结合在一起。这种偶联作用对于聚烯烃之类的热塑性塑料特别适用。长链的缠绕可转移应力应变,提高冲击强度、伸长率和剪切强度,同时可在保持拉伸强度的情况下,增加填充量。偶联剂大致可分为系、钛酸酯系、铝酸酯系、锆酸酯系、铬络合物系及其他脂肪酸、醇、酯等几类,但应用广泛的主要是前两种。171偶联剂供应商服务热线。
此外,长链烃基还可以改变无机物界面处的表面能,使黏度下降,高填充聚合物显示良好的熔融流动性。钛酸酯偶联剂应尽量避免与具有表面活性的助剂并用,它们会干扰钛酸酯在界面处的偶联反应,如果非使用这些助剂,应在填料、偶联剂和聚合物充分混合之后再加入。多数钛酸酯都不同程度地与酯类增塑剂发生酯交换反应,因此,酯类增塑剂的加入也应在填料、偶联剂和聚合物充分混合形成偶联之后。另外三个有机长链可与聚合物分子发生缠绕,这样就将聚合物与填料紧密地结合在一起。171偶联剂供应商服务热线。
锆类偶联剂。这类偶联剂不仅可以促进无机物和有机物的结合,还能改善填料体系的的性能,它的特点是能显著降低填料体系的粘度,抑制填料粒子间的相互作用,从而提高填料在体系中的分散性和增加填充量。它对碳酸钙、二氧化硅、氧化铝、氧化钛及陶土等填充体系有良好的改性效果,主要应用于聚烯烃、聚酯、环氧树脂,合成橡胶等不同的聚合物填充体系。改性氨基偶联剂、过氧基偶联剂和叠氮基偶联剂的合成与应用就是这一时期的主要成果。171偶联剂供应商服务热线。
铝钛复合偶联剂。以铝代替了部分作为偶联剂的中心原子,减少了偶联剂价格较高的钛的含量,是成本得以降低。它兼有钛系、铝系偶联剂的特点,偶连效果优于单一的钛酸酯、铝酸酯以及两者简单的混合物。铝锆酸酯偶联剂。这类偶联剂是含铝、锆元素的有机络合物的低聚物,铝锆酸脂类偶联剂具有价格低(约为偶联剂的一半),应用效果好(具有良好的水解稳定性),热稳定好的特点。根据用途及处理对象不同,可按桥联配位基选取不同的铝-锆酸酯偶联剂。171偶联剂供应商服务热线。
长链烷烃基团。长的脂肪族碳链比较柔软,能和有机基体进行弯曲缠绕,增强和基体的结合力,提高它们的相容性,改善体系的熔融流动性和加工性能,缩短混料时间,增加无机填料的填充量,并赋予柔韧性及应力转移功能,从而提高延伸、撕裂和冲击强度。171偶联剂供应商服务热线。胶黏剂中加入1%~10%的偶联剂,可以提高粘接强度,井能提高耐水性、耐潮性及耐热性等,并可扩大胶黏剂的使范围。
化学反应基团。当活性基团联结在钛的有机骨架上,就能使钛酸酯偶联剂和有机聚合物进行化学反应而交联。例如,不饱和双键能和不饱和树脂进行交联,使无机填料、颜料和有机基体结合。非水解基团数。钛酸酯偶联剂中非水解基团的数目至少具有两个以上。在螯合型钛酸酯偶联剂中具有2个或3个非水解基团;在单烷氧基型钛酸酯偶联剂中有3个非水解基团。由于分子中多个非水解基团的作用,可以加强缠绕,并因碳原子数多可急剧改变表面能,大幅度降低体系的黏度。由于界面不形成多分子层及钛酸酯偶联剂的特殊化学结构,生成的较低表面能使粘度大大降低。171偶联剂供应商服务热线。
①通过R基与无机填料表面的羟基反应,形成偶联剂的单分子层,从而起化学偶联作用。填料界面上的水和自由质子(H+)是与偶联剂起作用的反应点。 能发生各种类型的酯基转化反应,由此可使钛酸酯偶联剂与聚合物及填料产生交联,同时还可与环氧树脂中的羟基发生酯化反应。近年来出现了一些性能的无机/有机杂化材料、固载化催化剂和固定化酶以及不受影响具分离功能的材料,而偶联剂已成为它们不可缺少的合成原料。 171偶联剂供应商服务热线。
由于界面不形成多分子层及钛酸酯偶联剂的特殊化学结构,生成的较低表面能使粘度大大降低。用钛酸酯偶联剂处理过的无机物是亲水和亲有机物的。将钛酸酯偶联剂加入聚合物中可提高材料的冲击强度,填料添加量可达50%以上,且不会发生相分离。以上是单分子层理论,还有化学键理论、浸润效应和表面能理论、可变形层理论、约束层理论、酸 碱反应理论等。氧基对无机物具有反应性(石英),有机官能基对有机物具有反应性(如树脂),因此当偶联剂介于无机和有机界面之间,可以形成有机机体-偶联剂-无机机体的结合层。171偶联剂供应商服务热线。
(作者: 来源:)