特征提取辨识一般布匹检测(自动识别)先利用高清晰度、高速摄像镜头拍摄标准图像,在此基础上设定一定标准;好的光源需要能够使你需要寻找的特征非常明显,除了是摄像头能够拍摄到部件外,好的光源应该能够产生对比度、亮度足够且对部件的位置变化不敏感。然后拍摄被检测的图像,再将两者进行对比。但是在布匹质量检测工程中要复杂一些:1. 图像的内容不是单一的图像,每块被测区域存在的杂质的数量、大小、颜
外观检查设备
特征提取辨识一般布匹检测(自动识别)先利用高清晰度、高速摄像镜头拍摄标准图像,在此基础上设定一定标准;好的光源需要能够使你需要寻找的特征非常明显,除了是摄像头能够拍摄到部件外,好的光源应该能够产生对比度、亮度足够且对部件的位置变化不敏感。然后拍摄被检测的图像,再将两者进行对比。但是在布匹质量检测工程中要复杂一些:1. 图像的内容不是单一的图像,每块被测区域存在的杂质的数量、大小、颜色、位置不一定一致。2. 杂质的形状难以事先确定。3. 由于布匹运动对光线产生反射,图像中可能会存在大量的噪声。4. 在流水线上,对布匹进行检测,有实时性的要求。由于上述原因,图像识别处理时应采取相应的算法,提取杂质的特征,进行模式识别,实现智能分析。
而在,视觉技术的应用开始于90年代,因为行业本身就属于新兴的领域,再加之机器视觉产品技术的普及不够,导致以上各行业的应用几乎空白。目前国内机器视觉大多为国外。国内大多机器视觉公司基本上是靠代理国外各种机器视觉起家,随着机器视觉的不断应用,公司规模慢慢做大,技术上已经逐渐成熟。随着经济水平的提高,3D机器视觉也开始进入人们的视野。3D机器视觉大多用于水果和蔬菜、木材、化妆品、烘焙食品、电子组件和产品的评级。它可以提高合格产品的生产能力,在生产过程的早期就报废劣质产品,从而减少了浪费节约成本。这种功能非常适合用于高度、形状、数量甚至色彩等产品属性的成像。《视觉测量技术》分别介绍视觉测量技术的历史与发展、系统的硬件组成、图像与处理、图像分割、摄像机标定、单目视觉测量与双目视觉测量的相关技术与方法。
产品的小型化趋势让这个行业能够在更小的空间内包装更多的部件,这意味着机器视觉产品变得更小,这样他们就能够在厂区所提供的有限空间内应用。例如在工业配件上LED 已经成为主导光源,它的小尺寸使成像参数的测定变得容易,他们的性和稳定性非常适用于工厂设备。[1-2]《视觉测量技术》适合从事计算机、自动化、模式识别、智能科学、人机交互技术的科技人员阅读,也可以作为高等院校相关的学生、研究生的教学参考书。
集成产品增多智能相机的发展预示了集成产品增多的趋势,智能相机是在一个单独的盒内集成了处理器、镜头、光源、输入/输出装置及以太网,电话和 PDA 推动了更快、更便宜的精简指令集计算机(RISC)的发展,这使智能相机和嵌入式处理器的出现成为可能。同样,现场可编程门列阵(FPGA)技术的进步为智能相机增添了计算功能,并为PC 机嵌入了处理器和桢,智能相机结合处理大多数计算任务的FPGA,DSP和微处理器则会更具有智能性 。在行业应用方面,主要有制药、包装、电子、汽车制造、半导体、纺织、、交通、物流等行业,用机器视觉技术取代人工,可以提供生产效率和产量。
机器是指由零部件组装成的装置,可以运转,用来代替人的劳动、作能量变换或产生有用功。机器一般由动力部分、传动部分、执行部分和控制部分组成。从能量角度定义,机器为利用或转换机械能的装置,将其他形式的能量转换为机械能的称原动机,如内燃机、蒸汽机,电动机等,利用机械能来完成有用功的称工作机,如各种机床、起重机、压缩机等。随着科学技术的发展,机器的概念也在不断地更新和变化。4毫米/inchFL=按23毫米镜头的要求注:勿将工作距离与物体到像的距离混淆。

(作者: 来源:)