为研究后离心通风机型号叶轮的流场及噪声问题,采用三维建模软件UG对现有叶轮进行逆向建模,提取出叶轮的几何模型,运用Hypermesh对叶轮模型进行网格划分,然后采用Fluent软件模拟了叶轮三维粘性定常流动特性,分析了叶轮内部流动情况,在此基础上对叶轮模型进行噪声分析,得到流场模拟和噪声分析结果,为叶轮优化设计提供理论依据。消声蜗壳对离心通风机型号气动性能的影
离心通风机型号
为研究后离心通风机型号叶轮的流场及噪声问题,采用三维建模软件UG对现有叶轮进行逆向建模,提取出叶轮的几何模型,运用Hypermesh对叶轮模型进行网格划分,然后采用Fluent软件模拟了叶轮三维粘性定常流动特性,分析了叶轮内部流动情况,在此基础上对叶轮模型进行噪声分析,得到流场模拟和噪声分析结果,为叶轮优化设计提供理论依据。消声蜗壳对离心通风机型号气动性能的影响原风机与不同消声组合试验所得的气动性能对比如图3所示。
离心通风机型号作为干燥、通风类家电产品的重要组成部件,其性能直接影响着家电产量的高低。风机性能测试采用C型试验装置对带进气箱的离心风机进行了性能测试,测试标准按GB/T1236-2017《工业通风机用标准化风道进行性能实验》执行。随着现代生活对节能、环保等要求日益提高,开发、低噪风机成为必然趋势。离心式通风机的工作介质为气体,工作过程中会产生气动噪声、机械噪声和气固耦合噪声,其中气动噪声是主要噪声,约占到总噪声的45%左右。风机气动噪声主要由离散噪声(旋转噪声)和湍流噪声组成。高速高压离心风机旋转噪声较高,低速低压风机以湍流噪声为主。且基频噪声和宽频噪声在风机中不同程度的存在。目前对离心式通风机降噪研究还处于试验为主的研究阶段,但试验研究成本较大、周期较长,这对离心通风机型号产品开发非常不利。此外,影响离心式通风机气动噪声的因素众多,设计所得结果的降噪机理难以被系统揭示。数值模拟方法能够提供风机的内部流场信息和噪声分布情况,有利于准确认识离心式通风机噪声产生机理和降噪原理,为进一步推广降噪设计的方法提供依据。所以,对离心式通风机数值模拟的研究是非常必要的。
将离心通风机型号模型导入ICEM 进行网格划分,网格划分过程中对离心风机关键部位要进行加密处理,如叶轮、集流器、蜗舌、进气箱的转角处等。把Pro/E建立的几何模型导入Fluent中并对几何模型的边界条件计算参数进行设定。对风机的进口与出口适当延长,以保证计算的稳定性。考虑到离心风机结构的复杂且不规则性,本文采用非结构四面体网格进行划分,其中无进气箱的离心风机网格数量约370万,网格质量为0.3以上;带进气箱的离心风机网格数量为380万,网格质量为0.3以上。
离心通风机型号采用标准k-模型,壁面函数为Scalable,数值计算方法为高阶求解格式,求解格式为一阶格式。整机压力云图分布通过Fluent软件对掘进工作面离心风机进行流场数值模拟,模拟得出在同流量下,加米字集流器和普通集流器离心风机压力云图可以看出,风机静压从进口至出口逐渐增大,在蜗壳外达到较大。由于通风机转速低,马赫数小,可认为气流为不可压缩定常流动。进口给定质量流量,出口给定静压,壁面条件为无滑移边界,转速为1 480r/min,并将流动区域分为静止域与旋转域,两者通过Interface连接,连接模型为普通连接,坐标变换为转子算法,网格连接方式为GGI。本文所研究的某离心风机叶轮有均布的16 个前向的大小叶片,其内部流场较为复杂,为了揭示离心通风机型号内的流场特性,对风机进行全三维数值模拟。先单独分析了进气箱内部流场特性,然后对进气箱与风机进行一体化分析,研究进气箱对离心风机性能的影响。
以离心通风机型号蜗壳与叶轮出口在半径方向上的间距随方位角线性递增来优化蜗壳型线,并用试验证明了良好的蜗壳型线不仅能提高风机效率及全压,还能改变流量-压力曲线的变化趋势;BEENA等[11]通过应用层次分析法(AHP),对蜗壳的重要几何参数进行了优先排序,阐明了各参数对离心风机性能的影响;离心通风机型号采用3种不同流量的五孔探头,测量了风机蜗壳内流体的三维流动,得出传统一维蜗壳型线设计方法忽略了风机内部严重的泄漏情况,应根据流体实际流动进行修正的结论。为改善离心通风机型号受气体粘性影响导致流动分离加剧的现象,在传统蜗壳型线设计理论的基础上,研究气体粘性力矩对蜗壳壁线分布的影响,并采用动量矩修正方法对其进行改型设计。本文在传统蜗壳型线设计理论基础上,以某抽油烟机用多翼离心风机为研究对象,
离心通风机型号采用动量矩修正方法对其进行性能优化。由效率曲线图可知,大流量区计算结果比实测结果偏高,小流量区计算结果比实测结果偏低,说明计算结果与实测结果吻合。并考虑粘性应力的作用对原有k-ε计算模型进行修正,以期提高数值计算结果的准确度,为CFD数值模拟预测风机性能的可靠性提供参考。多翼离心风机由进口集流器、叶轮及蜗壳组成,具体结构如图1所示。其设计转速n=1200r/min,设计流量Qv=0.15m3/s,主要尺寸参数为:离心通风机型号蜗壳宽度b1152mm,叶轮内径1D210mm,叶轮外径2D246mm,叶片进口安装角178A,叶片出口安装角2160A,叶片圆弧半径r14mm,叶片数z60。为了提供更好的来流条件,给定较为准确的边界条件,本研究在利用Solidworks软件对风机进行三维建模时,分别将进风区域和出风区域进行延长处理,以保证进出口气体的流动充分发展。另外,为了方便模型的建立,在尽量减小数值模拟误差的前提下对电动机结构进行一定程度的简化,
(作者: 来源:)