车牌识别系统常见问题
车牌识别系统常用于停车场、路口监控等,而此系统重要的组成部分就是车牌识别模块。不管是什么样子的设备,都有可能出现一些问题,当然车牌自动识别系统也是如此,那么车牌自动识别系统出了问题如何解决呢?
车牌识别系统常见问题:
感光部件对外部环境的处理:环境是影响车牌识别的主要因素,在采集车辆图像时,由于环境光线变化剧烈,白天光较强、夜间较弱,面光与背光不
智能车牌识别系统厂家
车牌识别系统常见问题
车牌识别系统常用于停车场、路口监控等,而此系统重要的组成部分就是车牌识别模块。不管是什么样子的设备,都有可能出现一些问题,当然车牌自动识别系统也是如此,那么车牌自动识别系统出了问题如何解决呢?
车牌识别系统常见问题:
感光部件对外部环境的处理:环境是影响车牌识别的主要因素,在采集车辆图像时,由于环境光线变化剧烈,白天光较强、夜间较弱,面光与背光不同,上午和下午的光照方向也不一样,抓拍图像时受环境光线影响较大,车速过高、采集设备的动态范围等都使成像质量难以得到有效保证。当识别算法认为车牌达到了蕞佳成像位置时系统触发系统开始拍摄,这对触发设备的可靠性和响应速度都有较高的要求。所以要解决环境造成识别率低下的问题,还要靠摄像机的感光部件对外部环境的处理。车牌识别系统利用电动挡车器、出入口控制终端、车牌识别、线圈检测器等出入口设备做连动整合,对于每辆车停车时间亦可计算或限制,更加强防盗/防弊功能,使对通过出入口的车辆能更有效的辨识和管理。
对图像预处理:车牌定位之般要对图像做预处理,然后再进行车牌的定位、分割、识别等部分。由于得到的车牌图像可能含有较多噪声,或图像对比度不强、车牌被部分遮挡、车牌处出现污点、变脏、模糊退色、有其它字符区域干扰、以及出现因运动产生的图像模糊失真等情况,所以定位算法实现起来有较多困难。对于字符分割,则可能存在光照不均、污迹严重、车牌倾斜、对比度小、牌照退色、牌照字符粘连等不利因素,这样就需要研发与之适应的算法。如算法能适应各种复杂环境和有噪声、车牌遮挡、车牌倾斜等状况的话,那就可以大大提高车牌识别的概率。3、系统实测识别率:几乎每家都宣称拥有高辨识率,但为了避免事后因为双方对产品认知有差异,而将运作不良的责任互相推托,用户在采购车牌辨识系统时,不妨要求实地测试,而且测试时间蕞好超过两个礼拜,比较能判断辨识结果是否“言过其实”。
车牌识别系统车牌识别率
一个车牌识别系统是否实用,蕞重要的指标是识别率。国际交通技术作过专门的识别率指标论述,要求是24小时全天候全牌正确识别率95%以上。
为了测试一个车牌识别系统识别率,需要将该系统安装在一个实际应用环境中,全天候运行24小时以上,采集至少1000辆自然车流通行时的车牌照进行识别,并且需要将车牌图像和识别结果存储下来,以便调取查看。然后,还需要得到实际通过的车辆图像以及正确的人工识别结果。为了测试一个车牌识别系统识别率,需要将该系统安装在一个实际应用环境中,全天候运行24小时以上,采集至少1000辆自然车流通行时的车牌照进行识别,并且需要将车牌图像和识别结果存储下来,以便调取查看。之后便可以统计出以下识别率:
1、自然交通流量的识别率=全牌正确识别总数/实际通过的车辆总数
2、可识别车牌照的百分率=人工正确读取的车牌照总数/实际通过的车辆总数
3、可识别全牌正确识别率=全牌正确识别的车牌照总数/人工读取的车牌照总数这三个指标决定了车牌识别系统的识别率,诸如可信度、误识率等都是车牌识别过程中的中间结果。
车牌识别系统车牌切分模块
车牌系统的车牌切分模块利用了车牌文字的灰度、颜色、边缘分布等各种特征,能较好地抑制车牌周围其他噪声的影响,并能容忍一定倾斜角度的车牌。这一算法有利于类似移动式稽查这种车牌图像噪声较大的应用。
车牌识别模块
在车牌识别系统中,通常采用多种识别模型相结合的方法来进行车牌识别,构建一种层次化的字符识别流程,可有效地提高字符识别的正确率。另一方面,在字符识别之前,使用计算机智能算法对字符图像进行前期处理,不仅可尽可能保留图像信息,而且可提高图像质量,提高相似字符的可区分性,保证字符识别的可靠性。安视睿前端硬件识别也叫一体式车牌识别摄像机,是将传统单独的车牌识别仪嵌入至摄像机中,实现前端硬件与摄像机一体化,实现图像抓拍、视频流传输、字符识别、道闸抬杆等一系列的工作。
(作者: 来源:)