单相桥式整流电路是基本的将交流转换为直流的电路单相桥式整流电路是基本的将交流转换为直流的电路,在分析整流电路工作原理时,整流电路中的二极管具有单向导电性。当正半周时,二极管D1、D3导通,在负载电阻上得到正弦波的正半周。当负半周时,二极管D2、D4导通,在负载电阻上得到正弦波的负半周。例如生产线验证电子产品待测物的电压和频率波动适应能力,那么可编程交流电源具备常规电压和频率
山东不间断电源
单相桥式整流电路是基本的将交流转换为直流的电路
单相桥式整流电路是基本的将交流转换为直流的电路,在分析整流电路工作原理时,整流电路中的二极管具有单向导电性。当正半周时,二极管D1、D3导通,在负载电阻上得到正弦波的正半周。当负半周时,二极管D2、D4导通,在负载电阻上得到正弦波的负半周。例如生产线验证电子产品待测物的电压和频率波动适应能力,那么可编程交流电源具备常规电压和频率变动功能即可,无需其他()功能。在负载电阻上正、负半周经过合成,得到的是同一个方向的单向脉动电压。
日常生活中,我们常见手机充电器、电脑电源等电子设备插头插入插座瞬间,插座内部出现电火花,甚至还能听到一声“啪”。产生以上现象主要原因是电子设备启动浪涌电流过大。较大的启动浪涌电流,容易损坏电子设备的器件(如整流桥、继电器),也可能干扰到周围电子设备正常工作,甚至会导致电网线路跳闸断电。视在功率——Apparentpower,电子设备容量,等于电压有效值和电流有效值的乘积,单位是伏安(VA),简称S,S=U*I。有效控制电子设备启动浪涌电流不仅有利于提高电子设备使用寿命,而且能降低对周围的电子设备干扰影响,量测和改善电子设备启动浪涌电流是电子设备研发和验证过程中不可或缺的环节。

三相不平衡带载对比:变频电源
三相不平衡带载对比:
变频电源:逆变部分采用星型方式,每相可独立带载,适应三相完全不平衡负载。
变频器:变频器采用△逆变,虽然输出通过变压器转变成Y型输出,但对三相不平衡负载适应性较差,可能会使电动机中逆扭矩增加,使电动机温度上升,效率下降,能耗增加,发生震动,输出亏耗。
相交流电是电能的一种输送形式,简称为三相电。三相交流电源,是由三个频率相同、振幅相等、相位依次互差120°的交流电势组成的电源。我国发电厂和电力网生产、输送和分配的交流电都是三相交流电。

电压测量精度——Voltagemeasurentaccura
电压测量精度——Voltage measurement accuracy,测量电压值V1与实际电压值Vo的比值,ΔV/Vo=(V1-Vo)/Vo*,比如实际电压值是5V,测量电压值是5.01V,那么电压测量精度就是0.01/5* =0.2%;当输出电流需求在短时间内大幅减小或增大时,输出电压也可能会大幅降低或升高。
电流测量精度——Current measurement accuracy,测量电流值I1与实际电流Io的比值,ΔI/Io=(I1-Io)/Io*,比如实际输出电流是5A,测量电流是5.01A,那么电流测量精度就是0.01/5* =0.2%;尤其是不具备功率因数校正的开关方式或整流器电源、电机等非线性电子设备的启动浪涌电流的峰值电流是其电流有效值的3到4倍,浪涌电流一般会出持续几个周期到几秒钟,如图2所示。
直流偏置电压——DC offset voltage,交流电中存在直流电压成分,比如典型值20mVDC;

系统工作原理与硬件实现
基于DAC波形拟合输出的可编程交流电源系统主要由主控芯片STM32F103ZET6、滤波、功率放大、变压器、显示、按键灯模块构成。系统原理框图如图1所示,CPU2根据输出要求,通过按键、显示环节设置好输出参数,由SPI串行总线将数据传至CPU1,并用其内置12 bit DAC拟合出对应的波形并输出。由于DAC拟合出的波形为阶梯波,需对拟合出的波形进行滤波处理,先低通滤波后串电容进行交流耦合来提高波形质量。之后再对滤波后的波形进行功率放大处理,其中功放环节的增益为20 dB,可以对波形幅值进行适当放大。功率放大后的波形,按需选择相应的电压型或者电流型变压器接入即可得到所需的输出。过热保护——Overtemperatureprotection,在电源内部发生异常或因使用不当而使电源温升超标时停止电源的工作并发出报警信号。在设定好幅值、频率、相位等参数并使之输出期间,CPU2对终输出的信号进行采集并计算,应用PID算法调节误差,使输出且稳定地响应至设定值,同时通过LCD液晶屏显示各输出参数。
(作者: 来源:)