激光器工作物质
根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体激光器(晶体和玻璃),这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体
小功率纳秒激光器价格
激光器工作物质
根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体激光器(晶体和玻璃),这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl2)则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。在物理学研究、激光聚变、光化学、光通讯等领域均有非常可观的前景。
想了解更多关于纳秒激光器的相关资讯,请持续关注本公司。
激光器
激光器发出的光信号进入光纤的途径主要有两种方式:直接耦合、透镜耦合,其中透镜耦合又分为单透镜耦合和多透镜耦合。预计2021年总体市场规模将达到2489亿元,未来三年复合增速达20%。利用透镜耦合可以获得比直接耦合更高的耦合效率。而采用双透镜耦合,其主要优势就是可以分散公差,使得光路上的元件可以有更大的位移空间。
想了解更多关于纳秒激光器的相关资讯,请持续关注本公司。
激光新应用--石材加工
近几年,随着国内激光技术的飞速发展,激光器生产制造工艺的不断成熟,激光器应用行业也愈加广泛,并逐渐走进了我们的生活。激光器原理激光器除自由电子激光器外,各种激光器的基本工作原理均相同。从起初的科研,到如今较为普遍的3C,再到客户定制的各类个性化产品,激光加工应用切切实实的来到了我们的日常生活中。 本篇我们来讲一讲有关激光在石材方面的应用。一直以来,比较普遍的石材加工方式有打磨、喷砂、雕刻,但是这些加工方式,经过多年的实践应用,都存在或多或少的缺点。比如耗费人工大、产品一致性不高、加工精细度不够等问题。近几年,随着激光打标机在玉石加工行业的应用探索,紫外激光打标机已经能有效的解决部分问题。
比如:一、对于以往“喷砂”这道工艺极其耗费人力的问题。泵浦源为激光器的光源,谐振腔为泵浦光源与增益介质之间的回路,增益介质指可将光放大的工作物质。 激光打标工艺省去了刻字、贴纸、喷砂、去纸等工序。 二、对于“机械雕刻”工艺中容易产生裂纹的问题。 激光加工中的窄线宽、高峰值功率则能把裂纹控制在肉眼无法观察出的范围内。 三、对于“雕刻不能加工小尺寸图案”的问题。 激光雕刻机的窄线宽,高峰值功率也能很好的予以解决。 实例:搭配贝林低功率紫外激光器(LP106 5W-40KHZ)的打标机加工圆形黑玛瑙。
为了追求加工速度,增加单位产能,盲目的提高平均功率是不可取的。海外激光装备包括德国通快(激光装备)、Amada(激光装备)、瑞士百超(激光装备)、Velodyne(激光雷达)、ASML(激光装备)等。玛瑙为黑色材质,对加工过程中产生的热量吸收较好,如果盲目增加平均功率,而不注意脉宽的压缩,只能使玛瑙吸收更多的热量,这样一会导致玛瑙表面开裂,二会使粉尘熔融粘在珠子表面,使材料报废。但是目前纳秒紫外脉冲激光器的脉宽基本是随着平均功率的增加而增大的,而且受限于目前的Q开关技术,纳秒激光器的脉宽窄也就在10ns以内。
(作者: 来源:)