焦化厂运用蜂窝式电捕焦油器的主要工艺及技术流程
工艺流程:来自炼焦炉的荒煤气通过气液分离器完成气液分离,分离出的粗煤气并联进入初冷器进行冷却。分离下来的焦油氨水和焦油渣一同进入机械化氨水澄清槽分离。
初冷器分上下两段,在初冷器上段,煤气与冷却管内的循环水换热,煤气从82℃冷却到45℃,循环水由32℃升至40℃。然后,煤气进入
的湿式电捕焦油器厂家
焦化厂运用蜂窝式电捕焦油器的主要工艺及技术流程
工艺流程:来自炼焦炉的荒煤气通过气液分离器完成气液分离,分离出的粗煤气并联进入初冷器进行冷却。分离下来的焦油氨水和焦油渣一同进入机械化氨水澄清槽分离。
初冷器分上下两段,在初冷器上段,煤气与冷却管内的循环水换热,煤气从82℃冷却到45℃,循环水由32℃升至40℃。然后,煤气进入初冷器下段与冷却管内的制冷水换热,煤气从45℃冷却到22℃,制冷水由16℃升至23℃。经冷却后的煤气并联进入蜂窝式电捕焦油器,地清除煤气中的焦油雾滴及萘,经电捕后的煤气进入离心鼓风机进行加压。加压后的煤气送往脱硫工段。
初冷器的煤气冷凝液分离由初冷器上段和下段流出,分离经初冷器水封槽后进入上下段冷凝液循环槽,分离由上段冷凝液循环泵和下段冷凝液循环泵加压后送至初冷器上下段喷淋,如此循环运用,剩下部分由下段冷凝液循环泵抽送机械化氨水澄清槽。
从气液分离器分离的焦油、氨水与焦油渣自流至机械化氨水澄清槽。澄清后分离成三层,上层为氨水,中层为焦油,基层为焦油渣。分离的氨水溢流至循环氨水槽,然后用循环氨水泵送焦炉冷却荒煤气。冷器和电捕焦油器需要清扫时,从循环氨水泵后抽出一部分定时清扫。剩下的氨水由循环氨水泵抽送至剩下氨水槽,充沛沉降分离后用剩下氨水泵送至脱硫工段进行蒸氨。当集气管发作堵塞时用高压氨水泵抽送一部分氨水冲刷集气管。分离的焦油至焦油中心槽,定时用焦油泵将其送往罐区。分离的焦油渣定时送往煤场掺混炼焦。
经蜂窝式电捕焦油器捕集下来的焦油排入电捕水封槽,当沉淀管用循环氨水冲刷时,冲刷液亦进入电捕水封槽中, 由电捕水封槽液下泵送至机械化氨水澄清槽。
袋式除尘器在适应高含尘浓度方面实现突破,能够直接处理浓度1400g/Nm3的含尘气体并达标排放,入口含尘浓度比以往提高数十倍。因此,许多工业部门的粉料回收系统可抛弃原有的多级收尘工艺,而以一级收尘取代。例如,以长袋低压脉冲袋式除尘器的核心技术为基础,强化其过滤、清灰和安全防爆功能,形成高浓度煤粉收集技术,已成功用于煤磨系统的收粉工艺,并在武钢、鞍钢等多家企业推广应用。实测入口煤粉浓度675 g/Nm3~879 g/Nm3,排尘浓度0.59 mg/Nm3~12.2 mg/Nm3,设备阻力1 100 Pa,经济效益、社会效益、环境效益显著。
这项技术已经成功地促进了水泥磨机系统的优化。水泥磨以往主要依靠旋风除尘器收集产品,而以袋式除尘器控制粉尘外排。现在变为以袋式除尘器同时完成收集产品和控制外排两项任务,使产量大幅度提高,消耗降低。
对于以往在袋式除尘器前加预除尘的做法,现在普遍认为对袋式除尘不但无利,而且使清灰变得困难。这同以往的观念完全不同。
影响脉冲布袋除尘器设备阻力的因素有哪些,影响设备阻力的因素有过滤风速、粉尘负荷、纤维长度等,下面我们就来一一细说。
(1)过滤风速。设备阻力在很大程度上取决于选定的过滤风速。除尘器结构阻力、清洁滤料的阻力及滤料上附着粉尘层的阻力都随过滤风速的提高而增加。所以,过滤风速决定阻力大小。
(2)粉尘负荷。粉尘堆积负荷对积尘滤料的阻力有决定性影响,直接关系着阻力大小。滤料表面粉尘层积得越多,除尘器阻力越大。对毡而言,堆积后的粉尘阻力约为清洁滤布的6—8倍。工作过程中布袋除尘器的阻力不是定值,而是随时间变化的。随着过滤的进行,滤料粘附着的粉尘层逐渐增厚,透气性降低,阻力便相应增加。此时便需清灰,以便将阻力控制在一定范围内,确保除尘器的正常工作。
(3)纤维长度。不同结构滤料的阻力通常有如下关系,长纤维滤料高于短纤维滤料;不起绒滤料高于起绒滤料;机织滤料高于毡类滤料。
(4)在同样条件下采用高能量清灰方式的设备阻力较低,而采用低能量清灰方式的设备阻力较高,这是由于请会后滤料剩余粉尘量不同所致。
由此可见,在布袋除尘器允许的阻力确定后,过滤风速、进口含尘浓度和过滤持续时间这三个参数是互相制约的。如处理含尘浓度低的气体时,清灰时间间隔可以适当延长,处理含尘浓度高的气体时,清灰时间间隔应尽量缩短。进口含尘浓度低、清灰时间间隔短、清灰效果好的除尘器可以选用较高的过滤风速;反之,则应选用较低的过滤风速。
(作者: 来源:)