光电探测器分类及应用
光电探测器能把光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。
应用
光电探测器件的应用选择,探测器结构实际上是应用时的一些事项或要点。在很多要求不太严格的应用中,可采用任何一种光电探测器件。不过在某些情况下,选用某种器件会更合适些。光电池是固体光电器件
单光子光电探测器价格
光电探测器分类及应用
光电探测器能把光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。
应用
光电探测器件的应用选择,探测器结构实际上是应用时的一些事项或要点。在很多要求不太严格的应用中,可采用任何一种光电探测器件。不过在某些情况下,选用某种器件会更合适些。光电池是固体光电器件中具有光敏面积的器件,它除用做探测器件外,还可作太阳能变换器。例如,当需要比较大的光敏面积时,可选用真空光电管,因其光谱响应范围比较宽,故真空光电管普遍应用于分光光度计中。当被测辐射信号微弱、要求响应速度较高时,采用光电倍增管合适,因为其放大倍数可达10^4~10^8以上,这样高的增益可使其信号超过输出和放大线路内的噪声分量,使得对探测器的限制只剩下光阴极电流中的统计变化。因此,在天文学、光谱学、激光测距和闪烁计数等方面,光电倍增管得到广泛应用。
光电探测器
光电二极管和普通二极管一样,也是由PN结构成的半导体,也具有单方向导电性,但是在电路中它不作为整流元件,而是把光信号转变为电信号的光电传感器件。
普通二极管在反向电压工作时处于截止状态,只能流过微弱的反向电流,光电二极管在设计和制作时尽量使PN结的面积相较大,以便接收入射光。光电二极管在反向电压工作下的,没有光照时,反向电流极其微弱,叫暗电流;有光照时,反向电流迅速增加到几十微安,称为光电流。光的强度越大,反向电流也越大。光电探测器半导体光电探测器是利用半导体材料的光电效应来接收和探测光信号的器件,它通过吸收光子产生电子-空穴对,从而在外电路产生与入射光强度成正比的光电流以方便测量入射光。光的变化引起光电二极管电流变化,这就可以把光信号转换为电信号,称为光电传感器件。
光电探测器的发展现状
现在,光电探测器的发展主要集中在红外,已开始研制第三代红外探测器,并提出了第三代红外热像仪的概念,主要是双色或三色、高分辨率、制冷型热像仪和智能焦平面阵列探测器。因此红外探测技术较长远的发展趋势是开发出第三代。
由于红外光电探测器技术的不断完善,从光电探测器芯片上提升技术已相当困难。为进一步提,人们现在把注意力转到红外光电探测器的信号读出集成电路(ROIC)上。按照探测范围可以分为:点控红外探测器,线控红外探测器,面控红外探测器,空间防范红外探测器。随着计算机技术和集成电路的发展,ROIC已有很大的进展,中规模的红外焦平面阵列和相应的读出电路在20世纪90年代已形成生产规模。
现在发达正在研制用于大规模焦平面阵列(三代器件)、有多种功能的ROIC和智能化焦平面阵列。智能化焦平面阵列是片上处理系统,在光敏芯片上模仿动物的功能,对光-电转换后的信号作预处理,然后再输出数据。其他材料可采取镶嵌靶面的方法,整个靶面由约10万个单独探测器组成。这个过程虽然不属于直接接收光信号的过程,但对光电探测器的综合性能有极大影响。
如何选择一个合适的光电探测器
光电探测器总的选择匹配原则是:
①光电探测器和辐射信号源及光学系统在光谱特性上相匹配;
②光电探测器的光电转换特性和入射辐射能量相匹配;
③光电探测器和光信号的调制形式、信号频率及波形相匹配;
④光电探测器和输入电路的电气特性相匹配。
如果您对光电探测器感兴趣,康冠世纪欢迎新老顾客莅临!!!
(作者: 来源:)