声学装饰公司
音频应用涉及人类感知,频率范围为 20Hz 至 20kHz。在室温下的空气中,音频问题的波长范围从大约 17 m 到 17mm。如果我们用一种网格计算整个人类听觉频率范围,我们需要解析对应于 20 kHz 的波长。这一工艺层面上的优化,zui直观的聆听感受就是声音的体量变大了,在收听交响乐的时候,我感受到了更为饱满的力量和开阔的空间感。在高频端,这导致zui
声学装饰公司
声学装饰公司
音频应用涉及人类感知,频率范围为 20Hz 至 20kHz。在室温下的空气中,音频问题的波长范围从大约 17 m 到 17mm。如果我们用一种网格计算整个人类听觉频率范围,我们需要解析对应于 20 kHz 的波长。这一工艺层面上的优化,zui直观的聆听感受就是声音的体量变大了,在收听交响乐的时候,我感受到了更为饱满的力量和开阔的空间感。在高频端,这导致zui大单元大小,或空间分辨率,为(17mm / 5 =)3.2mm。声学装饰公司对zui高频率的网格进行解析会导致用于低频预测的网格过于密集。在 20 Hz 时,波长为 17 m,每波长有 5360 个节点,远远超过所需的 10 或 12 个节点。每个节点都对应于计算机的内存分配。虽然这种密集网格方法从精que度的角度来看是很好的,但是过于密集的网格占用了计算资源,并因此需要较长的时间进行计算。声学装饰公司
对于某些问题,流体的温度或密度可能在计算域内发生显著变化。如果出现这种情况,声速会发生变化,并且必须包含在模型中。网格必须足够密集才能反映这一点。声学装饰公司
此讨论与射线zhui踪、压力声学,边界元和声学扩散接口无关。本文中的信息可应用于气动声学和热粘性声学接口或基于 dG-FEM 的超声波接口的自由场问题。因此,对于使用二次单元的基于波的建模,我们每个波长需要5或6个二阶单元()。声学装饰公司流动的对流效应改变了波长,应该在源的上游或下游使用复杂的网格来体现这一点。线性纳维-斯托克斯和线性欧拉接口具有默认的线性插值(单元),因此每个波长需要 10 或 12 个单元。热粘性声学接口设计用于解析声学边界层。该层的厚度也与频率有关,可以使用与这里所讨论的类似的方法用于该层的高效网格划分和分辨率。声学装饰公司
分贝是指一贝尔的十分之一,通常被用于表达音量。分贝并不能表达所有的事情,它只是两个能量水平的比率。由于我们靠耳朵感知音量,这些遵循对数曲线的比值按分贝来表达使许多事情变得简单多了。声学装饰公司
一些值得记住的分贝数字:人耳在正常情况下能感觉出变化的zui小音量单位是1分贝;扬声器功率增加一倍,其结果是会有3分贝的明显增加,音量增加一倍就是6分贝的变化;如果要把音量增加一倍的话,我们需要把放大器的功率增加到原来的四倍。声学装饰公司
在声学方面,吸音指声音没有反射,声波在遇到软材料时被吸收了。各种材料的吸收能力根据吸收系数进行分级,这是根据声音撞击到表面时被材料吸收的相对声能量来确定。声学装饰公司
吸音系数测量的是当声音撞击到物体表面时被材料吸收的相对声能量,它通常是一个从0到1的值,它乘以物体表面积所得的数就是被物体表面吸收的声音的百分比。连续谱反应整体结构的噪声状况,可用于整体降噪改进(减振、隔振等)。这个百分比的单位就是Sabins,起源于哈佛jiao授,声学家Wallace Sabine的名字。声学装饰公司


(作者: 来源:)