武汉迅微光电技术有限公司从事生物医学光电子技术领域产品的研发、生产和销售。目前主要产品为激光散斑血流成像仪、内源光信号成像系统、荧光-血流多模态成像系统、高稳定半导体激光器光源等。激光散斑的统计特性时变散斑是一种随机现象,只能使用统计学的方法分析,为此提出了详细的理论解释和分析。欢迎来电咨询!!!基于散斑干涉法的技术法国天文学家安托万·埃米尔·亨利·拉贝里耶于1970年提出物体
高分辨激光成像仪
武汉迅微光电技术有限公司从事生物医学光电子技术领域产品的研发、生产和销售。目前主要产品为激光散斑血流成像仪、内源光信号成像系统、荧光-血流多模态成像系统、高稳定半导体激光器光源等。激光散斑的统计特性时变散斑是一种随机现象,只能使用统计学的方法分析,为此提出了详细的理论解释和分析。欢迎来电咨询!!!基于散斑干涉法的技术法国天文学家安托万·埃米尔·亨利·拉贝里耶于1970年提出物体高分辨率结构影像等信息可经由对物体的散斑图像进行傅里叶转换(散斑干涉法)而得到。1980年代相关技术的发展让研究人员得以将散斑图像进行干涉的影像重建而得到高分辨率影像。另一种较新式的散斑干涉法称为“斑点掩模”,这涉及每个短时间曝光影像的双光谱或闭合相位。接着可计算平均双光谱并进行反转以取得影像。在进行孔径遮罩干涉时效果特别良好。在进行孔径遮罩干涉时,天文学家会将望远镜的口镜遮蔽一部分,除了数个让光线可穿透的孔,这时的望远镜如同一个小型的光学干涉仪,让望远镜的分辨率高于一般的状况。孔径遮罩干涉是由卡文迪许实验室天文1物理学组首先研发成功。

。具有相同优点的另外一种光学检测技术——激光多普1勒速度测量技术,是利用粒子散射光的强度波动引起的多普1勒频移来测量散射子的速度,它可用于监控血流以及人体其它组织或器1官的运动。所有散斑成像的技术原理都是以极短的曝光时间对目标天体进行拍摄,并进行影像处理以去除视宁度的效应。天文学家以这些技术获得了一些新发现,包含了数千个不使用相关技术就无法分辨的联星,以及其他恒星表面类似太阳黑子的现象。而许多技术至今仍在使用,尤其是成像对象相对较明亮时。理论上,望远镜的分辨率极限是基于夫琅禾费衍射的望远镜主镜口径的函数。这会导致远处的物体成像会分散为一个小区域的斑点,即艾里斑。一群分布在小于分辨率极限距离内的物体成像看起来是单一物体。口径较大的望远镜因为可接收较多光线,所以能观测到光度较微弱物体,并且也可看到体积较小物体。
血液微循环能够反映生物组织的功能活动和疾病机理,因此微循环血流监测是一种非常重要的医学诊断方法。粗糙表面和介质中散射子可以看作是由不规则分布的大量面元构成,相干光照射时,不同的面元对入射相干光的反射或散射会引起不同的光程差,反射或散射的光波动在空间相遇时会发生干涉现图1成像散斑形成象。激光散斑衬比成像可以对生物微循环血流进行高时空分辨率的实时全场成像。由于具有非接触,无创伤,成像等优点,激光散斑成像技术非常适用于血液微循环的测量。使用激光散斑技术可以测量血管管径,血管密度,血液流速和血流灌注等微循环参数。通过考察微循环血管的结构,微循环功能以及代谢活动,可以研究、水肿、出血、过敏、损伤等基本病理过程中微循环改变的规律及其病理机制,对疾病诊断,病情分析和救治措施都具有重要的意意。
武汉迅微光电技术有限公司从事生物医学光电子技术领域产品的研发、生产和销售。目前主要产品为激光散斑血流成像仪、内源光信号成像系统、荧光-血流多模态成像系统、高稳定半导体激光器光源等。散斑现象主要由可见的相干光形成,但应强调的是,在其它的电磁波谱区会出现此类现象。欢迎来电咨询!!!双光束散斑干涉法在相干光照明下,把待测表面漫反射所形成的散斑场,和固定且不变形的另一表面的漫反射所形的散斑场叠加,构成一个新的散斑场。在待测表面发生变形的过程中,这个叠加而成的散斑场将发生如下变化:变形体表面沿法线方向每移动1/2波长的距离,斑的明暗变化就形成一个循环。当物体表面有不均匀的离面位移时,凡是位移为1/2波长及其整数倍的地方,散斑仍是原来的状态。变形前后斑的亮度分布的细节完全相同的区域,称为相关部分;反之,则称为不相关部分。故可以采用适当的方法,把相关部分的干涉条纹显示出来,从而了解物体表面的全场变形状况。

(作者: 来源:)