公司座落于武汉光谷生物城,联合产业园集群效应,公司技术团队长期从事豆科植物的科学实验研究以及转基因改造工程。利用高1效率的CRISPR基因编辑平台及转基因技术,成功地对多种豆类、苜蓿、百脉根进行过遗传转化。对各种常见豆类、百脉根(MG20、Gifu)苜蓿(A17、R108)品种都有实际操作经验,熟知种苗特性、培养条件、转化条件、遗传转化效率,且转化体系成熟,实操经验丰富。现
豆科植物遗传转化技术
公司座落于武汉光谷生物城,联合产业园集群效应,公司技术团队长期从事豆科植物的科学实验研究以及转基因改造工程。利用高1效率的CRISPR基因编辑平台及转基因技术,成功地对多种豆类、苜蓿、百脉根进行过遗传转化。对各种常见豆类、百脉根(MG20、Gifu)苜蓿(A17、R108)品种都有实际操作经验,熟知种苗特性、培养条件、转化条件、遗传转化效率,且转化体系成熟,实操经验丰富。现面向市场,推广豆科植物遗传转化技术服务,您只需提供基因信息,即可获得团队的技术服务。公司平台承诺:对于操作过的品种,公司不成功,不收费!
豆科植物遗传转化流程:
载体构建和农杆1菌转化——大豆萌发和侵染——共培养——诱导丛生芽——诱导芽伸长——诱导生根——转化苗入土和体外——检测
公司座落于武汉光谷生物城,联合产业园集群效应,公司技术团队长期从事豆科植物的科学实验研究以及转基因改造工程。利用高1效率的CRISPR基因编辑平台及转基因技术,成功地对多种豆类、苜蓿、百脉根进行过遗传转化。
豆科植物首先分泌类黄酮诱导根瘤菌合成结瘤因子,结瘤因子被植物根毛细胞识别后引起一系列的根毛反应,如诱导根毛弯曲、细菌侵入以及侵染线的形成、皮层细胞分裂、根瘤原基开始形成等,根瘤菌从分支的侵染线中释放,进入根瘤原基细胞中,内化的细菌被宿主植物生物膜包裹,从而形成密闭的空间,称为类菌体,它是固氮根瘤菌的分化形式。根瘤原基发育成根瘤,形成固氮共生体。
那么,是什么因素决定了哪些微生物群可以和植物共存呢?换句话说,植物自身是否进化出了某些机制来维持特定的微生物群落种类和结构呢?这些是植物微生物群研究领域的重要科学问题。
随着洪水事件频繁发生,植物暴露于缺氧和根腐病菌滋生的环境下,容易造成不可避免的作物损失,特别是在土壤排水不良的地区。因此,提高豆类品种的水淹耐受性对于减少作物损失至关重要。
(作者: 来源:)