图1-1 直角坐标型机器人 [3] a.结构简单,直观,刚度高。多做成大型龙门式或框架式机器人。 [3] b. 3个关节的运动相互独立,没有耦合,运动学求解简单,不产生奇异状态。采用直线滚动导轨后,速度和定位精度高。 [3] c.工件的装卸、夹具的安装等受到立柱、横梁等构件的限制。 [3] d.容易编程和控制,控制方式与数控机床类似。 [3] e.导轨面防护比较困难。移动部件的惯量
IRB4600ABB机器人图片
图1-1 直角坐标型机器人 [3] a.结构简单,直观,刚度高。多做成大型龙门式或框架式机器人。 [3] b. 3个关节的运动相互独立,没有耦合,运动学求解简单,不产生奇异状态。采用直线滚动导轨后,速度和定位精度高。 [3] c.工件的装卸、夹具的安装等受到立柱、横梁等构件的限制。 [3] d.容易编程和控制,控制方式与数控机床类似。 [3] e.导轨面防护比较困难。移动部件的惯量比较大,增加了驱动装置的尺寸和能量消耗,操作灵活性较差。
(5)按照机器人移动性来分类[3]
可分为半移动式机器人(机器人整体固定在某个位置,只有部分可以运动,例如机械手)和移动机器人。[3]
随着机器人的不断发展,人们发现固定于某一位置操作的机器人并不能完全满足各方面的需要。因此,20世纪80年代后期,许多有计划地开展了移动机器人技术的研究。所谓的移动机器人,就是一种具有高度自主规划、自行组织、自适应能力,适合于在复杂的非结构化环境中工作的机器人,它融合了计算机技术、信息技术、通信技术、微电子技术和机器人技术等。
机器人操作臂的工作范围根据工艺要求和操作运动的轨迹来确定。一个操作运动的轨迹往往是几个动作合成的,在确定工作范围时,可将运动轨迹分解成单个动作,由单个动作的行程确定机器人操作臂的行程。为便于调整,可适当加大行程数值。各个动作的行程确定之后,机器人操作臂的工作范围也就定下来了。工作速度 [3] 通常指机器人操作臂末端的速度。提高速度可提高工作效率,因此提高机器人的加速减速能力,保证机器人加速减速过程的平稳性是非常重要的。

(作者: 来源:)