电涌保护器限制电网中的大气过电压(闪电雷击)不超过各种设备及配电装置能够承受的冲击耐压。
电涌器的实质为半导体压敏电阻器件,电阻大小依赖于电涌器的端电压。
当端电压小于保护器的触发电压Up时,保护器的电阻很高(大于1兆欧),只有很小的漏电流(小于1毫安)流过,当端电压(如大气过电压)达到其触发电压Up时电阻突然减小到只有几欧姆,使很大的涌流流过,在很短的时间
光伏浪涌保护器
电涌保护器限制电网中的大气过电压(闪电雷击)不超过各种设备及配电装置能够承受的冲击耐压。
电涌器的实质为半导体压敏电阻器件,电阻大小依赖于电涌器的端电压。
当端电压小于保护器的触发电压Up时,保护器的电阻很高(大于1兆欧),只有很小的漏电流(小于1毫安)流过,当端电压(如大气过电压)达到其触发电压Up时电阻突然减小到只有几欧姆,使很大的涌流流过,在很短的时间内使得过电压突降之后又变成高阻性。
放电电流Imax(极限冲击通流容量)的选择流过SPD、8/20 μs 电流波的峰值电流,用于II 级分类试验。Imax 与In 有许多相同点,他们都是用8/20 μs 电流波的峰值电流对SPD 做II 级分类试验。不同之处也很明显,Imax 只对SPD 做一次冲击试验,试验后SPD 不发生实质性破坏;而In 可以做20次这样的试验,试验后SPD 也不能有实质性破坏。因此,Imax 是冲击的电流极限值,所以zui大放电电流也称为极限冲击通流容量。显然,Imax>In。
云层与地之间的雷击放电,由一次或若干次单独的闪电组成,每次闪电都携带若干幅值很高、持续时间很短的电流。一个典型的雷电放电将包括二次或三次的闪电,每次闪电之间大约相隔二十分之一秒的时间。大多数闪电电流在10,000至100,000安培的范围之间降落,其持续时间一般小于100微秒。
供电系统内部由于大容量设备和变频设备等的使用,带来日益严重的内部浪涌题目。我们将其回结为瞬态过电压(TVS)的影响。任何用电设备都存在供电电源电压的答应范围。有时即便是很窄的过电压冲击也会造成设备的电源或全部损坏。瞬态过电压(TVS)破坏作用就是这样。特别是对一些敏感的微电子设备,有时很小的浪涌冲击就可能造成致命的损坏。
浪涌保护器的原理跟组成浪涌保护器的元器件有很大的关系:
1.气体放电管
气体放电管由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,
2.压敏电阻
压敏电阻的至大参考电压应由被保护电子设备的耐受电压来确定,应使压敏电阻的残压被保护电子设备的而损电压水平,即(Ulma)max≤Ub/K,上式中K为残压比,Ub为被保护设备的而损电压。
(作者: 来源:)