离子镀,是在真空条件下,利用气体放电使气体或被蒸发物质离子化,在气体离子或蒸发物质离子轰击作用下,把蒸发物质或其反应物蒸镀在工件上。离子镀把辉光放电、等离子技术与真空蒸镀技术结合在一起,不仅明显地提高了镀层的各种性能,而且,大大扩充了镀膜技术的应用范围。
离子镀除兼有真空溅射的优点外,还具有膜层的附着力强、绕射性好、可镀材料广泛等优点。例如,利用离子镀技术可以在金属、塑料
金属镀膜设备
离子镀,是在真空条件下,利用气体放电使气体或被蒸发物质离子化,在气体离子或蒸发物质离子轰击作用下,把蒸发物质或其反应物蒸镀在工件上。离子镀把辉光放电、等离子技术与真空蒸镀技术结合在一起,不仅明显地提高了镀层的各种性能,而且,大大扩充了镀膜技术的应用范围。
离子镀除兼有真空溅射的优点外,还具有膜层的附着力强、绕射性好、可镀材料广泛等优点。例如,利用离子镀技术可以在金属、塑料、陶瓷、玻璃、纸张等非金属材料上,涂覆具有不同性能的单一镀层、合金镀层、化合物镀层及各种复合镀层,而且沉积速度快(可达755m/min),镀前清洗工序简单,对环境无污染,因此,近年来在国内外得到了迅速的发展。
离化PVD技术通过将成膜材料高度电离化形成膜材料离子,从而增加膜材料离子的沉积动能,并使之在高化学活性状态下沉积薄膜的技术,包括离子镀、离子束沉积和离子束辅助沉积三类。
离化PVD过程大多是蒸发/溅射(气相物质激发)与等离子体离化过程(赋能、)的交叉结合。
蒸发镀膜是依靠源材料的晶格振动能克服逸出功,从而形成沉积粒子的热发射,即:外加能量(电阻/电子束/激光/电弧/射频)赋予材料较高的晶格振动能,使其克服固有的逸出功逸出粒子。而溅射是依靠高能离子输入动能,借助源材料中粒子间的弹性碰撞,致使更高动能粒子逸出。离化PVD 是以其它手段激发沉积物质粒子,然后使之与高度电离的等离子体交互作用(类似 PECVD),促使沉积粒子离化,使之既可被电场加速而获得更高动能,同时在低温状态下具有高化学活性。
化学气相沉积的特点
化学气相沉积工艺是,将加热的模具暴露在发生反应的混合气氛(真空度≤1Pa)中,使气体与模具表面发生反应,在模具表面上生成一层薄的固相沉积物,如金属碳化物、氮化物、硼化物等。这里有两个关键因素:
一是作为初始混合气体气相与基体固相界面的作用,也就是说,各种初始气体之间在界面上的反应来产生沉积,或是通过气相的一个组分与基体表面之间的反应来产生沉积。
二是沉积反应必须在一定的能量条件下进行。一般情况下,产生气相沉积的化学反应必须有足够高的温度作为条件,在有些情况下,可以采用等离子体或激光辅助作为条件,降低沉积反应的温度。
关于溅射工艺,在使用磁控溅射工艺的同时施加几种材料的精细层。该真空镀膜工艺的原材料采用靶材的形式。在溅射过程中,将磁控管放置在靶材附近。然后,在真空室中引入惰性气体,该惰性气体通过沿磁控管的方向在靶和基板之间施加高电压而加速,从而从靶中释放出原子尺寸的颗粒。这些粒子是由于气体离子传递的动能而投射出来的,这些离子已经到达目标并到达基板并形成固体薄膜。该技术可以将表面上先前存在的污染物从表面上清除掉,这是通过反转基材和目标之间的电压极性
(作者: 来源:)