隔音减振声学装饰
频率为横坐标,声音的强弱(声压级、声强级或声功率级)为纵坐标,绘制出声音强弱随频率分布的线图称为声音的频谱,简称声谱。
由FFT分析得到的频谱,具有等带宽性质,其频率分辨率等于谱线间隔Δf,这种方法谱线较多,Δf 较小,可称为窄带谱。隔音减振声学装饰
声音的频率范围很宽,一般不可能,也没有必要对每个频率逐一测量,一般都用1/1倍频程或1
隔音减振声学装饰
隔音减振声学装饰
频率为横坐标,声音的强弱(声压级、声强级或声功率级)为纵坐标,绘制出声音强弱随频率分布的线图称为声音的频谱,简称声谱。
由FFT分析得到的频谱,具有等带宽性质,其频率分辨率等于谱线间隔Δf,这种方法谱线较多,Δf 较小,可称为窄带谱。隔音减振声学装饰
声音的频率范围很宽,一般不可能,也没有必要对每个频率逐一测量,一般都用1/1倍频程或1/3倍频程进行分析。
用声谱进行分析时,可得到线谱和连续谱等。线谱多是由转动引起的谐波,可用于改进机械结构;连续谱反应整体结构的噪声状况,可用于整体降噪改进(减振、隔振等)。隔音减振声学装饰
心理声学(Psychoacoustics):声学和心理学的结合,是声学领域的新贵。人脑这个黑箱,给声学带来了无尽不确定性以及挑战。在原来的文章也长篇大论过,不在这里展开。
语音(Speech):包括语音的产生、处理和感知,涉及到物理、生理、心理、语音信号处理和语言学。在人工智能/机器学习中,语音识别和语义分析是两大重要课题。很多声学咨询都可以提供相关服务,国内外在环境声学领域都有很多人在做。如何让语音清晰、高效、高质量的被传递和接受是现在语音交互中的难点。我在上面提到的人工智能声学那篇文章也有提过。
声学模态分析
声学模态分析中提供了以下的声学边界条件,包括:压力、表面阻抗边界、波吸收边界、表面辐射边界、波吸收单元、自由液面。提供的声学载荷,包括:温度、阻抗层、静压力。
模态分析支持的载荷
模态分析支持的边界条件
对于结构-声学耦合场分析,可以对分析系统右键插入Create Automatic>FSI,实现自动识别并创建FSI。
声学模态分析中导入后的模型可以通过Physical Region对象定义模型树中的体是属于声学域还是结构域。对于声学域,可以使用额外的高ji设置,用于指ding声学域的物理属性。
对于声学域的网格划分推荐每个波长内至少6个高阶单元或12个低阶单元,而PML层的厚度至少为四分之一波长,并且在一个模型中不要混合使用高阶单元和低阶单元。。。。。。
设置此次分析的求解频率范围为0到3000Hz。选择模型所有面,设置所有面单元大小为0.01m。在求解频率范围内,该单元大小满足声学求解要求。。。。。。


(作者: 来源:)