供应离心风机边界条件下的工作压力为101325pa,入口边界条件下的压力入口,表压为0,初始压力为-50pa。供应离心风机出口边界条件设置有压力出口,根据不同的工作条件设置不同的压力值。其他边界保持默认墙设置。目前,只有一些简单的流动机理可以研究,如室内空气流动、静水中的气泡上升、颗粒与筒体在流动过程中的碰撞磨损等。采用三种不同的网格密度对离心风机的计算
供应离心风机


供应离心风机边界条件下的工作压力为101325pa,入口边界条件下的压力入口,表压为0,初始压力为-50pa。供应离心风机出口边界条件设置有压力出口,根据不同的工作条件设置不同的压力值。其他边界保持默认墙设置。目前,只有一些简单的流动机理可以研究,如室内空气流动、静水中的气泡上升、颗粒与筒体在流动过程中的碰撞磨损等。采用三种不同的网格密度对离心风机的计算域进行离散。较小网格数为case1,网格数为1404467。在此网格的基础上,相应边上的节点数增加了1.2倍,得到了实例2。网目尺寸为2506630。然后将case2对应边上的节点数增加1.2倍,得到case3的网格,即4647360。在三种不同网格密度下设置相同的边界条件,经过计算,得到了供应离心风机样机在设计条件下的全压、全扭矩和效率。从表中可以看出,在设计条件下,风机的总压和效率随网格密度变化不大。但是,由case1和case2和case3计算的值之间存在一些差异。考虑到计算的准确性和机器时间的消耗,后一个网格的数量是根据案例2的数量计算的。

可以看出,供应离心风机样机长、短叶片的吸力面不仅产生分离现象,而且产生两个涡,设计工况下设计风机长、短叶片的吸力面存在一些分离现象,但没有明显的分离现象。产生了美国漩涡。通过比较两种方法的流线图可以看出,所设计的风机的整体流动性能得到了很大的提高,设计的风机的效率得到了很大的提高。为了计算风机内部的气动噪声,采用瞬态计算方法对离心风机内部的流场进行了计算。风机的瞬态计算过程如下所述。为了保证离心风机工作的可靠性,风机的前盖与集流器之间和蜗壳与转轴之间,都要保持必定的空隙。瞬态计算的收敛性判断。在供应离心风机瞬态计算过程中,每一时间步都相当于一个稳态过程。因此,有必要保证计算在每个时间步的收敛性。瞬态计算过程中存在内迭代的概念,内迭代的原理与稳态解的原理相同。内部迭代次数可以通过模型树节点的运行计算面板中的参数maxIteration/timestep来设置。瞬态计算时间步长的确定是瞬态解的关键步骤。时间步长设置不当会导致一系列问题。如果时间步长太大,一个时间步长很难收敛和发散,时间分辨率太低。如果时间步长太小,迭代次数会增加,计算开销也会增加。因此,设定合理的时间步长是非常重要的。供应离心风机采用公式计算时间步长。设置原则是风机转子每转一次。
具体供应离心风机改造方案如下。
(1)对引风机和脱硫增压风机的风量、风压和系统阻力进行了试验。测量了两台引风机在机组满负荷运行时的实际运行数据。在前向离心风机中,蜗壳舌与叶轮之间的间隙通常为叶轮旋转直径的0。(2)根据试验后实测数据,终确定引风机改造方案。在原风机电机不变的情况下,风机叶轮直径由2557 mm增加到2624 mm,叶片类型发生变化。随着风机叶轮直径的增大,壳体、叶轮、轮毂和集热器都被更换。同时,为了提高风机出口挡板的密封性,对风机出口挡板、进口挡板和执行机构进行更换,以提高风机的效率。
(3)引风机轴承冷却方式由工业水冷却改为带风机轴承冷却,降低了用水量。
供应离心风机的性能保证:
(1)风量(Tb点工况,145c):134m3/s;
(2)全压升(Tb点工况,145c):7040pa;
(3)风机全压升效率(BMCR):86%,风机输入轴承。这两部分的温度监测大多采用遥控设备完成温度数据的传输和监测。非单调压力特性曲线表明,离心风机阻力变化较大时,风机风量变化较大,风机稳定工作面积较小。当然,供应离心风机温度传感器也是常用的设备,可以完成机组保护和温度监测。当温度超过要求时,继电器将发出警告。如果此时温度变化明显,继电器内部的液体装置也会发生剧烈变化,导致指针旋转。如果指针指示的值达到负载极限,将发出警报。
(作者: 来源:)