公司座落于武汉光谷生物城,联合产业园集群效应,公司技术团队长期从事豆科植物的科学实验研究以及转基因改造工程。利用高1效率的CRISPR基因编辑平台及转基因技术,成功地对多种豆类、苜蓿、百脉根进行过遗传转化。
豆科植物首先分泌类黄酮诱导根瘤菌合成结瘤因子,结瘤因子被植物根毛细胞识别后引起一系列的根毛反应,如诱导根毛弯曲、细菌侵入以及侵染线的形成、皮层细胞分裂、根瘤原基
豆科植物遗传转化方法
公司座落于武汉光谷生物城,联合产业园集群效应,公司技术团队长期从事豆科植物的科学实验研究以及转基因改造工程。利用高1效率的CRISPR基因编辑平台及转基因技术,成功地对多种豆类、苜蓿、百脉根进行过遗传转化。
豆科植物首先分泌类黄酮诱导根瘤菌合成结瘤因子,结瘤因子被植物根毛细胞识别后引起一系列的根毛反应,如诱导根毛弯曲、细菌侵入以及侵染线的形成、皮层细胞分裂、根瘤原基开始形成等,根瘤菌从分支的侵染线中释放,进入根瘤原基细胞中,内化的细菌被宿主植物生物膜包裹,从而形成密闭的空间,称为类菌体,它是固氮根瘤菌的分化形式。根瘤原基发育成根瘤,形成固氮共生体。
现在已知微生物群中除了少数微生物对植物有害(如病原微生物造成植物病害)或者有益(如根瘤菌可以和豆科植物根部共生,并将空气中的氮转化为植物可吸收的含氮化合物),其它绝大多数与植物共存的微生物的作用还不清楚。
植物组织培养技术可以对多种植物进行脱毒和快繁,高1效稳定的遗传转化体系是改良植物性状和研究植物基因功能过程中不可或缺的基础技术。在各种植物中,草类遗传背景复杂、进化高1级,建立其组培和遗传转化体系较为困难。
(作者: 来源:)